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Humans, as with other animals, decide between courses of action based on the evaluation of the relative 
worth of expected outcomes. How outcome magnitude interacts with temporal delay, however, has yet 
eluded a principled understanding that reconciles the breadth of well-established behaviors in 
intertemporal decision-making. Here, we review the history of this endeavor to rationalize decision-making 
regarding the domain of time, highlighting extant theories, their limitations, and recent experimental and 
theoretical advances. These new advances recast long presumed deficiencies in observed decision-making 
behavior, not as flaws, but rather as signs of optimal decision-making under experiential constraints. This 
new conception naturally unites the fields of intertemporal decision-making and time perception, which 
have long been recognized to be interconnected but not yet unified in a formal framework. 
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1 Introduction 
Humans and other animals have evolved to accumulate 
food and other rewards like water, sex, wealth, etc. 
Frequently, rewards are available only as a result of 
deliberate actions in their pursuit. For instance, a hungry 
lion might have to decide between two areas of the forest 
for foraging, one closer but with fewer prey and the other 
farther but with more prey. In order to be successful in the 
wild, animals must have evolved an effective mechanism 
to make such complex decisions, comparing between 
multiple options with differing magnitudes, delays and 
probabilities of rewards. Humans, too, routinely make 
such decisions in their day-to-day lives, to choose, for 
instance, between a closer but less preferred coffee shop 
and a farther, but better one. The question of how animals, 
including humans, make such intertemporal decisions has 

been the subject of at least eight decades of active 
research, in fields as diverse as economics, psychology, 
evolutionary ecology, neuroscience and addiction. Across 
the spectrum of these fields, researchers have approached 
this problem in myriad ways, with some proposing 
theories of animal behavior and others measuring animal 
behavior experimentally. However, there has not yet been 
significant agreement between theories and experiments. 
Here, we review theoretical work addressing this problem, 
in the context of recent advances in reconciling theories 
with experiments. For the purpose of this review, we focus 
only on a subset of the general problem, in the dimension 
of time, ignoring how differing probabilities and risks 
affect decisions.  

In order to make decisions about delayed rewards, 
animals must be able to measure those delays. Hence, the 
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problem of “intertemporal decision-making” is intertwined 
with time perception. However, theoretical and 
experimental work on 1) how animals measure delays, 
and, 2) how they make decisions between differently 
delayed rewards, has been largely non-overlapping. 
Nevertheless, there has been some recent work, both 
theoretical and experimental, that examines the 
connection between how animals make intertemporal 
decisions and how they perceive time. In the latter half of 
the review, we therefore focus on time perception, in the 
context of recent theoretical and experimental attempts to 
create a unified understanding of intertemporal decision-
making and time perception. 

First, we will provide a historical account of theories of 
intertemporal decision-making. 

1.1 History of Theories of Intertemporal Decision-
Making 

The problem of intertemporal choice was first mentioned 
in 1834 by John Rae (Rae, 1834). In his work, he wondered 
about the origins of differences in wealth between nations. 
Rae claimed that one of the key determinants of wealth of 
a nation is the nation’s “desire of accumulation”. The 
desire of accumulation, according to him, was determined 
by the balance between two kinds of psychological factors, 
one that motivates the nation to invest and save for the 
future and another that derives pleasure from immediate 
consumption. Thus, the idea of making decisions about 
delayed outcomes was framed as the conflict between two 
different psychological impulses of humans (and 
societies).  

The notion of intertemporal choices being driven by 
innate psychological quantities stuck ever since John Rae 
and persists to this day (e.g., Bickel et al., 2007; Frederick 
et al., 2002; Kalenscher & Pennartz, 2008, Madden & 
Bickel, 2010; McClure et al., 2004; van den Bos & McClure, 
2013). The first attempt to mathematically formalize the 
treatment of such psychological factors was made a 
century later by Paul Samuelson in 1937 (Samuelson, 1937, 
but see Bohm-Bawerk, 1889; Fisher, 1930) when he 
invented the “Discounted Utility Theory” (DUT). It is 
important to point out that DUT was borne out of ideas 
that originated from John Rae, and thus shared many of 
the same limitations. Nevertheless, it was the first simple 
and mathematically tractable formulation of the problem 
of intertemporal choice. Briefly, DUT states that 
intertemporal choices are made so as to maximize the “net 
discounted utility” of the future. Here, DUT assumes that 
the “utility” of a reward is given by its face value, if it were 
to be received immediately. For instance, the utility of $20 
is $20, irrespective of when you receive it. However, the 

immediate subjective value of $20 delayed by a fixed 
amount would be given by its “discounted utility”.  
The key postulate of DUT is that the “discounted utility” of 
a delayed reward is determined by an exponential 
discounting function, with the exponential constant—the 
discount rate—determining the ability of a person to 
delay gratification. In simpler terms, the discount rate 
measures the patience of an individual—the lower the 
discount rate, the higher your patience in waiting for a 
reward, i.e. the longer you are willing to wait to obtain that 
reward. The major simplification achieved by Samuelson 
was in compressing the different psychological factors of 
John Rae and others into a single, measurable parameter 
of self-control.  

The other major advance made by Samuelson was in 
treating the utility of different future rewards as the sum of 
their respective discounted utilities. This “net discounted 
utility”, as mentioned earlier, was expressed as shown 
below. 

 

(1) 

Here, D(t) is the discounting function, and u(t) is the 
utility of a single reward received at a delay of t. Time was 
assumed to be integrated up to a maximum delay of 
consideration, also known as the temporal horizon of a 
decision, represented by T.  

Samuelson’s model was simple and elegant, with its 
exponential form particularly attractive, owing to 
similarities with the calculation of compound interest. It 
further provided a single, measurable parameter of an 
individual’s ability to delay gratification (viz. k). Despite all 
these advantages, however, Samuelson had a number of 
reservations about the validity and utility of his model. 
Since most of these concerns were ignored by future 
researchers due to its distinct advantages, we would like to 
point them out here, in Samuelson’s own words. 

Concern 1: “In the first place, it is completely arbitrary to 
assume that the individual behaves so as to maximize an 
integral of the form envisaged. This involves the assumption 
that at every instant of time the individual's satisfaction 
depends only upon the consumption at that time, and that, 
furthermore, the individual tries to maximize the sum of 
instantaneous satisfactions reduced to some comparable 
base by time discount.” 

Concern 2: “A less important point to be noted is the fact 
that our equations hold only for an individual who is 
deciding at the beginning of the period how he will allocate 
his expenditures over the period. Actually, however, as the 
individual moves along in time there is a sort of perspective 

0
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phenomenon in that his view of the future in relation to his 
instantaneous time position remains invariant, rather than 
his evaluation of any particular year (e.g. I940). This 
relativity effect is expressed in the behavior of men who make 
irrevocable trusts, in the taking out of life insurance as a 
compulsory savings measure, etc….Moreover, in the analysis 
of the supply of savings, it is extremely doubtful whether we 
can learn much from considering such an economic man, 
whose tastes remain unchanged, who seeks to maximize 
some functional of consumption alone, in a perfect world, 
where all things are certain and synchronized.” 

In sum, Samuelson wrote "any connection between utility 
as discussed here and any welfare concept is disavowed”, 
stressing that there was no a priori reason why his model 
would be a valid or normative way of describing human 
behavior. 

Despite these strong reservations, Samuelson’s work 
paved the way for the exponential model of discounting, 
and more generally, the idea of discounting functions, to 
be ingrained into work on intertemporal choices (Benzion 
et al., 1989; Fehr, 2002; Fishburn & Rubinstein, 1982; 
Frederick et al., 2002; Kalenscher & Pennartz, 2008; 
Laibson, 1997; Lancaster, 1963; Madden & Bickel, 2010; 
Thaler, 1981; van den Bos & McClure, 2013). DUT received 
further theoretical support in 1960 when Koopmans 
showed that DUT can be derived from a set of simple 
axioms (Koopmans, 1960). The most important axiom was 
the statement (one that Samuelson recognized, as 
mentioned above) that the intertemporal preferences of 
an individual are stationary over time, i.e. if an individual 
prefers option 1 in a choice between option 1 and option 2, 
if the delay between the two options is fixed, the 
individual will always prefer option 1, independent of how 
much time has elapsed since the first decision was made. 
Like Samuelson, Koopmans also did not argue for the 
normative or descriptive validity of these axioms.  

Nevertheless, further work on intertemporal choice in 
economics considered consistent time preferences and 
stationarity as a fundamental tenet of human rationality 
(see Drouhin, 2009; Fishburn & Rubinstein, 1982; 
Frederick et al., 2002; Koopmans, 1960; Lapied & Renault, 
2012a, 2012b; Strotz, 1956 for a discussion). However, 
experimental evidence repeatedly showed that this core 
postulate is violated by humans (Ainslie, 1975; Ainslie & 
Monterosso, 2003; Benzion et al., 1989; Frederick et al., 
2002; Green et al., 1994; Holt et al., 2003; Loewenstein & 
Prelec, 1992; McClure et al., 2004; Thaler, 1981), pigeons 
(Ainslie, 1974; Chung & Herrnstein, 1967; Rachlin et al., 
1972) and rats (Bennett, 2002; Ito & Asaki, 1982). In fact, 
the axiom of constant time preference can be immediately 
seen to be violated by considering the following two 

example choices: “which would you prefer: $100 now or 
$105 in a month?” and “which would you prefer: $100 in a 
year or $105 in a year and one month?” It should be 
immediately clear that while most people prefer $105 in 
the second question, they prefer $100 in the first, thus 
violating the assumption of stationary preferences. 

In the face of such overwhelming evidence, there are 
two possible recourses to solving the apparent 
contradiction: 1) change one’s definition of rationality, or, 
2) state that all the animals tested above are irrational. 
Many economists chose the latter option, maintaining the 
axiom of stationary time preferences (and exponential 
discounting) as “rational” (see Drouhin, 2009; Lapied & 
Renault, 2012a, 2012b for a discussion). This is partly due to 
equating stationarity and time consistency (see Drouhin, 
2009; Lapied & Renault, 2012a, 2012b for a discussion), and 
partly due to the fact that other models of rationality, like 
reward rate maximization (Bateson, 2003; Bateson & 
Kacelnik, 1996; Stephens & Anderson, 2001; Stephens & 
Krebs, 1986; Stephens, 2008), have not been successful in 
explaining animal behavior.  

In addition to the violation of the assumption of 
stationarity of choices, many other assumptions of DUT 
have been shown to be violated by human behavior. For 
instance, DUT assumes consumption independence—the 
utility of a reward does not depend on whether or not that 
reward was obtained in the immediate past. This is 
patently false, as surely animals can become sated over 
time. Consider too, for instance, that the preference for a 
restaurant will obviously depend on whether or not an 
individual ate there for the past five days. There are 
numerous other violations of DUT that are not going to be 
discussed here. For a more detailed overview of these 
violations, see prior reviews on this topic (Frederick et al., 
2002; Kalenscher & Pennartz, 2008). 

An assumption related to the stationarity axiom is that 
the discount factor (rate of discounting per unit 
discounting) is constant over time. Behavioral scientists 
and psychologists have shown that this, too, is repeatedly 
violated in experiments across many different species 
(Ainslie, 1974, 1975; Ainslie & Monterosso, 2003; Benzion et 
al., 1989; Calvert et al., 2010; Green et al., 1994; Holt et al., 
2003; Kobayashi & Schultz, 2008; Rachlin et al., 1972; 
Thaler, 1981). In fact, it was observed experimentally in 
1967 that delayed food rewards were preferred in inverse 
proportion to their delay (Chung & Herrnstein, 1967). This 
relationship was later mathematically reformulated within 
the framework of a discounting function by Ainslie 
(Ainslie, 1975) and experimentally confirmed by numerous 
subsequent papers (e.g., Ainslie, 1974, 1975; Ainslie & 
Monterosso, 2003; Benzion et al., 1989; Calvert et al., 2010; 
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Green et al., 1994; Holt et al., 2003; Kobayashi & Schultz, 
2008; Rachlin et al., 1972; Thaler, 1981). Specifically, this 
discounting function, that approximated intertemporal 
choice behavior better than exponential discounting 
functions, was hyperbolic in form. The animal’s choice 
under this conception can be expressed mathematically as 
shown below: 

 
(2) 

where D(t) represents the discounting function, r(t) is the 
reward magnitude of a reward available at delay t and k is 
the discounting constant. 

It is important to point out that the casting of 
experimental observations into a “discounting function” 
framework is due to the legacy of Samuelson’s work 
(Samuelson, 1937). In this view, the agency for the 
reduction in value of a reward with delay (temporal 
discounting) is due completely to a psychologically-innate 
discounting function. The contribution of Ainslie provided 
a much better descriptive model of experimental data. 
However, the contribution was only to find that a 
hyperbolic discounting function provided a better fit to 
experimental data than an exponential discounting 
function, and not a rationale for why hyperbolic 
discounting would better describe the data. 

Recently, many other forms of discounting functions 
have been proposed that provide even better fits to 
experimental data than pure hyperbolic discounting 
functions (al-Nowaihi & Dhami, 2008; Green & Myerson, 
2004; Killeen, 2009; Laibson, 1997; McClure et al., 2004; 
Schweighofer et al., 2006; van den Bos & McClure, 2013). 
Among the most prominent are quasi-hyperbolic 
discounting functions (Laibson, 1997) and β-δ discounting 
functions (McClure et al., 2004; van den Bos & McClure, 
2013). 

A major limitation of the hunt for the perfect 
discounting function to fit experimental data is that it 
provides only that—a fit to the data. It does not provide an 
explanation for why animals discount delayed rewards the 
way they do. Further, it also cannot rationalize the 
observed steepness of temporal discounting (a measure of 
patience, like k in DUT) of an individual in a given reward 
environment. Hence, all the different discounting 
functions described above are fits to the data which are 
assumed to originate from some innate psychological 
quality. For instance, finding that β-δ discounting 
functions provide better fits to experimental data has been 
used to infer that the brain has two separate systems 
involved in processing immediate and delayed rewards, 
respectively. Indeed, recent human imaging studies have 

shown that different areas of the brain are differentially 
involved when a subject is considering an immediate or a 
delayed reward (McClure et al., 2004, see Kalenscher & 
Pennartz, 2008; van den Bos & McClure, 2013 for reviews). 

A wholly different perspective to the problem of 
intertemporal choice, not wed to the notion of a 
discounting function, can be obtained by considering the 
field of behavioral ecology. In 1966, a highly influential 
paper was published in theoretical behavioral ecology by 
MacArthur and Pianka (MacArthur & Pianka, 1966). This 
paper considered how foraging animals should decide 
between different patches of food, if they behaved 
economically. It introduced the idea that animals should 
forage so as to maximize their net energy intake in the 
long run. Net energy intake was operationally defined as 
the total reward obtained per unit time spent in obtaining 
it. The idea behind the postulate was simple: obtaining a 
maximal rate of food intake would maximize the chances 
of living. Hence, in this conception, time was not merely a 
component of decision-making, but the most important 
dimension over which rewards needed to be accumulated.  

The idea of maximizing long-term reward rates was the 
key thesis behind many subsequent theories on optimal 
foraging (Charnov, 1976a, 1976b; Krebs, 1978; Krebs et al., 
1977; Pyke et al., 1977; Pyke, 1984). This literature is too vast 
to be fully considered here. For a detailed review of such 
theories, see Pyke (1984), and Stephens and Krebs (1986). 
Together, these theories came to be known as the Optimal 
Foraging Theory (OFT).  

Mathematically, OFT’s postulate of maximizing long-
term reward rates can be expressed as: 

 

(3) 

Here, all possible future rewards are added in the 
numerator (ri is an individual reward) and divided by the 
total time it takes to acquire them. ti is the delay in getting 
the ith reward from the moment that the (i-1)th reward was 
obtained. If the sum is carried over to infinity as shown 
above, the total time spent as shown in the denominator 
will be ∞. A more realistic conception would be to state 
that the long term reward rate is calculated not over an 
infinite future time horizon, but a finite (though 
appreciable), time horizon, T, similar to the temporal 
horizon considered in equation (1) for DUT. Thus, 
equation (3) can be rewritten as: 

1 max( ( ) ( )); ( )
1
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(4) 

where r(t) is the reward available at a delay of t. This 
equation looks similar in form to equation (1) of DUT, but 
with a key difference: the quantity that is being maximized 
is not the net discounted utility, but the net reward rate. 

Let us now consider how equation (4) was used to 
predict the intertemporal decisions of animals. Consider 
an animal choosing between two reward options, (r1,t1) and 
(r2,t2), where the ordered pair represents the reward 
magnitude and delay to reward, respectively. Consider too 
that after either reward, the animal has to wait a fixed 
intertrial interval (ITI) until foraging again. This might 
represent the time required to consume the rewards, for 
instance. 

It was argued, then, that the choice of the animal 
between option 1 and option 2 would be effectively the 
choice between the long-term reward rate obtained if the 
animal picked option 1 alone, and, the long-term reward 
rate obtained if the animal picked option 2 alone. Thus, 
the animal’s choice could be written as  

 
(5) 

Here, the total reward rate achieved if the animal picked 
only option i is the reward magnitude of option i divided 
by the total effective time spent per receipt of reward. 

Interestingly, a closer examination of equation (5), 
along with equation (2) reveals that the choice of 
maximizing reward rate as expressed in (5) is similar to 
maximizing a hyperbolically-discounted reward, with the 
hyperbolic constant k (Equation (5)) replaced by 1/ITI. 
Thus, it was argued that maximizing long-term reward rate 
underlies the experimentally observed hyperbolic 
discounting function mentioned earlier. This was the first 
instance wherein the agency for the decay in value of 
delayed rewards was not placed on an innate discounting 
function, but on the need to maximize an ecologically-
relevant metric of fitness, i.e. reward rate. 

Especially in the context of foraging, maximizing fitness 
or reward rate was a better definition of “rational” 
decision-making than stationarity of time preferences. 
However, it was soon obvious that while the experimental 
data on intertemporal decisions indicated a hyperbolic 
discounting function, this function did not result from a 
maximization of reward rates as considered in OFT. This 
was because, in experiments in which animals were given 
choices between two reward options but where the total 

trial duration was a constant (and not the ITI), animals did 
not always pick the larger reward (e.g., Ainslie, 1974; 
Bateson & Kacelnik, 1996; Blanchard et al., 2013; Cardinal 
et al., 2001; Grossbard & Mazur, 1986; Kacelnik & Bateson, 
1996; Kalenscher et al., 2005; Kobayashi & Schultz, 2008; 
Louie & Glimcher, 2010; Mazur, 1988; Pearson et al., 2010; 
Rachlin et al., 1972; Roesch et al., 2007; Stephens & 
Anderson, 2001; Winstanley et al., 2004). This was a direct 
challenge to the choice algorithm shown in equation (5) 
since the effective time spent on either option was equal, 
but the animals still did not pick the option with the larger 
reward magnitude. 

In the face of apparent empirical rejection, behavioral 
ecologists proposed an alternative decision-making 
algorithm within the realm of rate maximization. It was 
proposed that instead of maximizing long-term reward 
rates, animals maximized single-trial reward rates 
(Bateson & Kacelnik, 1996; Real, 1991; Stephens et al., 2004; 
Stephens & Krebs, 1986; Stephens, 2008). This approach 
has been referred to by many different names across the 
literature (Bateson & Kacelnik, 1996; Real, 1991; Stephens 
et al., 2004; Stephens & Krebs, 1986; Stephens, 2008), but 
we will refer to it by the name of Ecological Rationality 
Theory (ERT), as used by Stephens et al. (2004) and 
Stephens (2008). Regardless of the name, however, all 
these papers propose the following choice algorithm: 

 
(6) 

The major difference between the predictions of equations 
(5) and (6) is in the inclusion/exclusion of the various 
delay components into the decision. While equation (5) 
(OFT) considers all effective intervals within a trial, ERT 
only considers the delay to reward. Post-reward delays of 
any sort are excluded in the decision algorithm of ERT. 
The rationale for their exclusion was that in the wild, 
foraging animals rarely decide between options with 
differing post-reward delays associated with them. In fact, 
it was argued that typical decisions in the wild are not 
even in the form of binary choices as presented above. 
Instead, it was argued, that typical decisions in the wild 
have a “foreground-background nature”, i.e. that a choice 
is presented always in the context of background activity. 
Interestingly, it was shown that in laboratory tasks where 
such a foreground-background structure was presented to 
animals, equation (6) resulted in long-term reward rate 
maximization, as expressed in equation (4) (Stephens & 
Anderson, 2001; Stephens, 2008). This result—that in 
typical foraging decisions, maximizing single-trial reward 
rates is the same as maximizing long-term reward rates—
provided support for the argument that animals only 
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maximized single-trial reward rates, and is the basis of the 
name, Ecological Rationality Theory.  

While ERT provided better fits to experimental data in 
the foraging literature than OFT (e.g., Bateson & Kacelnik, 
1996; Stephens, 2008; Stephens & Anderson, 2001), it was 
nevertheless insufficient at providing quantitative fits to 
the experimental data collected in standard psychological 
tasks involving binary choices. This was because the 
effective discounting constant predicted by equation (6), 
according to a hyperbolic discounting function, is ∞. This 
is immediately apparent if one realizes that equation (5) 
(where k = 1/ITI) reduces to equation (6) when ITI = ∞, for 
when the ITI is infinite, the decision is effectively only over 
one trial. Yet, every discounting study measured finite, 
non-zero discounting constants (Ainslie, 1974; Bateson & 
Kacelnik, 1996; Blanchard et al., 2013; Cardinal et al., 2001; 
Grossbard & Mazur, 1986; Kacelnik & Bateson, 1996; 
Kalenscher et al., 2005; Kobayashi & Schultz, 2008; Louie 
& Glimcher, 2010; Mazur, 1988; Pearson et al., 2010; Rachlin 
et al., 1972; Roesch et al., 2007; Stephens & Anderson, 2001; 
Winstanley et al., 2004). 

In conclusion, theories from behavioral ecology that 
attempted to rationalize intertemporal decision-making 
within the framework of reward-rate maximization failed 
to provide satisfactory explanations for empirical data. 
Further, the theory (DUT) based on the assumption that 
temporal discounting must lead to stationary time 
preferences, and hence should abide by exponential 
discounting, is also inconsistent with experimental 
observations. Only psychological models like the 
hyperbolic discounting model proposed by Ainslie (1974, 
1975), among others (e.g., al-Nowaihi & Dhami, 2008; 
Green & Myerson, 2004; Killeen, 2009; Laibson, 1997; 
McClure et al., 2004; Schweighofer et al., 2006; van den 
Bos & McClure, 2013), provided good fits to observed data 
from laboratory tasks. These models, however, are not 
based on any normative principle of decision-making, 
unlike DUT, OFT and ERT, and therefore do not 
rationalize why apparent discounting functions take the 
shape that they do. 

2 Recent Experimental and 
Theoretical Advances in the 
Study of Intertemporal 
Decision-Making 

In this section of the review, we will focus on recent 
advances in aligning theories and experiments of 
intertemporal decision-making. For this purpose, we only 
consider normative theories and models that propose 
principles of intertemporal decision-making. For recent 

descriptive models that attempt to fit data, please refer to 
the following literature: al-Nowaihi and Dhami (2008), 
Killeen (2009), and van den Bos and McClure (2013). 

2.1 Experimental Advances 

As was mentioned in Section 1.1, the crucial observation 
that invalidated the idea of long-term reward rate 
maximization was the finding that animals do not include 
post-reward delays in their decisions (e.g., Ainslie, 1974; 
Bateson & Kacelnik, 1996; Blanchard et al., 2013; Cardinal 
et al., 2001; Grossbard & Mazur, 1986; Kacelnik & Bateson, 
1996; Kalenscher et al., 2005; Kobayashi & Schultz, 2008; 
Louie & Glimcher, 2010; Mazur, 1988; Pearson et al., 2010; 
Rachlin et al., 1972; Roesch et al., 2007; Stephens & 
Anderson, 2001; Winstanley et al., 2004). This meant that 
in a choice between two rewards that effectively take the 
same time, the animals did not necessarily choose the 
larger reward, hence violating the idea of reward rate 
maximization. It was also found that delays common to 
both options, like the ITI term in Equation (5) did not have 
an effect that matched that expected from maximizing 
long-term reward rates (e.g., Bateson & Kacelnik, 1996; 
Logue et al., 1985; Mazur, 1989, 2001; Snyderman, 1987; 
Stephens & Anderson, 2001). 

While these observations were a severe challenge to the 
idea of long-term reward rate maximization, some 
researchers realized that it was not a death blow 
(Blanchard et al., 2013; Kacelnik & Bateson, 1996; Stephens, 
2002). An explanation for these observed results could be 
that animals are not able to learn the association between 
the rewards and their corresponding post-reward delays. 
Were they able to learn the association between a post-
reward delay and the choices presented, they could 
potentially have chosen the larger option, consistent with 
reward rate maximization. Hence, it is not that animals do 
not maximize reward rates; it is just that they do so within 
constraints of evolved mechanisms of associative learning. 
This idea was first presented in 1996 by Alex Kacelnik and 
Melissa Bateson (Kacelnik & Bateson, 1996). They 
proposed the following mechanistic explanation for why 
delays following the receipt of reward might not be 
learned by animals performing standard intertemporal 
decision-making tasks. 

In order to measure the preferences of animals between 
two delayed rewards, they are first trained to learn the 
meaning of two conditioned stimuli (CS) (usually visual or 
auditory cues) that correspond to either reward option. In 
other words, prior to receiving the choices, the animals are 
presented with the CSs and their associated delayed 
rewards and post-reward delays. Once the animals learn 
the meaning of both CSs, they are presented with choice 
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trials in which they should pick one or the other CS, so as 
to receive the corresponding delayed reward. In order to 
learn the association between a CS and the corresponding 
reward, it was argued that it makes functional sense for 
the learning to be driven by the receipt of reward, so as to 
learn the causal relationship between the CS and the 
reward (Dickinson, 1980; Kacelnik & Bateson, 1996). In this 
framework, the retrospective assignment of value to the 
CS is driven only by the reward and not the moment of 
expiry of the post-reward delay. Hence, it was argued that 
the reason for choice behavior being insensitive to post-
reward delays was simply due to the lack of its learning. 
For a similar mechanistic argument from reinforcement-
theory, based on neural recordings from honeybees, see 
Montague et al. (1995).  

An indirect support to the above hypothesis was 
provided in 2010 when Pearson et al. found that presenting 
explicit cues to indicate the lapse of a post-reward delay 
made the choice behavior of monkeys move towards long-
term reward rate maximization (Pearson et al., 2010). 
Specifically, they designed the CSs to be vertical bars 
whose length was proportional to the net delay associated 
with that choice. The moment of receipt of reward was 
indicated by a colored horizontal line placed at a location 
corresponding to the delay to reward. The color of the 
reward line represented the reward magnitude. Hence, the 
post-reward delays were indicated by the length of the bar 
following the reward line. Crucially, as the monkeys chose 
an option, the other option disappeared from the screen 
and the chosen option’s vertical bar started to shrink in 
proportion to the passage of time. In this way, the 
monkeys were explicitly cued to the passage of the delay 
to reward and the post-reward delay. Interestingly, the 
explicit cueing was sufficient to increase the monkeys’ 
choice for the larger reward, thus indicating that in the 
presence of explicit information of the post-reward delays, 
the choice behavior of monkeys accorded better with long-
term reward rate maximization. 

Nevertheless, a direct test of the above-mentioned 
hypothesis would have been to test whether animals 
performing intertemporal choices can associate the 
appropriate post-reward delay with a given option. This is 
exactly what Blanchard and colleagues did in 2013 
(Blanchard et al., 2013. In their study, they performed three 
variants of the experiment mentioned above, but without 
any explicit cueing of the post-reward delay. In other 
words, in all their three experiments, the vertical bars only 
indicated the delay to reward. In the first experiment, they 
compared the performance of monkeys in the standard 
intertemporal choice task (with post-reward delays 
adjusted to have constant trial duration) to their 

performance in a task where the post-reward delays were 
randomly shuffled between the options. If the monkeys 
were able to correctly associate the post-reward delays 
with their corresponding reward, their performance would 
be different across these two versions. However, their 
results clearly indicated that monkeys failed to associate 
the post-reward delays to their corresponding reward 
option (Figure 1). 

 

 
Figure 1. Behavior of 3 monkeys is shown in a task that compares their 
performance between a standard intertemporal decision-making task 
(“std”) in which post-reward delays are adjusted to make the trial 
duration constant, and a random variant of the task in which the post-
reward delays are randomly chosen for each option (“rand”). As can be 
seen, all three monkeys showed similar discounting steepness across the 
standard and random variant, indicating that they did not appropriately 
learn the relationship between the rewards and their corresponding post-
reward delays. The optimal performance of an agent that correctly learns 
this relationship is shown by the black bar (“opt”), showing that none of 
the monkeys are optimal. Adapted from Figure 3 of Blanchard et al. 
(2013). 

Since the above hypothesis claims that learning is only 
triggered by the receipt of reward, another prediction is 
that when the post-reward delays are followed by a 
reward, they should be included in the decision. Blanchard 
et al. (2013) confirmed this prediction in a second 
experiment by presenting a small, but equal volume of 
reward at the end of the post-reward delays of both 
options. This, too, increased the likelihood of the monkeys 
choosing the larger reward. 

Finally, in the third experiment, they addressed whether 
the monkeys’ preferences were sensitive to the magnitude 
of the post-reward delay. In this experiment, they used an 
equal post-reward delay for both reward options, much 
like a constant ITI in earlier experiments, and varied it 
from 0s to 10s. Their results showed a clear dependence of 
the discounting steepness on the duration of the post-
reward delay. This is similar to the effect of the ITI term in 
Equation (5), except that the parameter that fit the choice 
data was always significantly lower than the real delay 
used. The reason for this discrepancy was claimed by the 
authors to result from a biased measure of the post-reward 
delay by the monkeys. However, it must be pointed out 
that prior tasks studying the effect of intertrial intervals 
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did not observe as clear a dependence of the discounting 
constant on the ITI (Bateson & Kacelnik, 1996; Logue et al., 
1985; Mazur, 1989, 2001; Snyderman, 1987; Stephens & 
Anderson, 2001). Further, in many timing tasks, animals’ 
perception of time is much more accurate than is required 
for these results to be explained by biased time 
perception, i.e., humans and other animals represent 
intervals in the msec to minutes range quite accurately 
(e.g., Allman et al., 2014; Buhusi & Meck, 2005; Matell & 
Meck, 2004; Merchant et al., 2013). Thus, it is likely that the 
reason for this discrepancy might not result fully from an 
inaccurate perception of post-reward delays. For a more 
detailed discussion of this point, see Section 2.2. 

In sum, the Blanchard et al. (2013) experiments 
convincingly demonstrate that the reason for insensitivity 
of choice behavior to post-reward delays is the lack of 
ability of animals to correctly associate those delays with 
the corresponding reward option. Hence, it would be 
incorrect to rule out theories of long-term reward rate 
maximization purely on the basis of this observation. In 
the next section, we present a novel theory of 
intertemporal decision-making which is based on reward 
rate maximization. We present the theory from first 
principles. A more rigorous treatment of the theory can be 
found in Namboodiri et al. (2014).  

2.2 Theoretical Advances 

Were decision-making simply the evaluation of offered 
reward magnitudes, the learning of the relationship 
between cues and their associated reward amounts would 
suffice to understand choice behavior. However, if offers 
are differentially displaced in time, the simple 
determination of which cue connotes the greatest reward 
no longer suffices to understand choice behavior should 
the goal of an animal be to gather the most reward while 
in an environment. The reason, as previously mentioned, 
is that time itself has a cost; in having chosen to pursue a 
larger later reward over a smaller earlier reward, the 
difference in reward amount achieved must outstrip the 
difference in the time invested which could otherwise be 
put to use in further gainful activity.  

In the prior sections we reviewed theories that contend 
with this issue. One such theory, DUT, is based on the 
normative argument that intertemporal decisions must be 
stationary in time, which, as mentioned, does not hold up 
to experimental scrutiny. And why, if mechanisms of 
intertemporal decision-making evolved under pressures of 
foraging, would stationary preferences be a better 
normative argument than simply the maximization of 
reward rates? From an evolutionary perspective, theories 
based on reward rate maximization (Stephens & 

Anderson, 2001; Stephens et al., 2004; Stephens & Krebs, 
1986) are more compelling, yet also do not well explain 
experimental data as animals do not include post-reward 
delays in their decision-making. Nevertheless, the 
exclusion of post-reward delays does not in itself rule out 
rate maximization as the goal, as it has been shown that 
their disregard is a consequence of an inability to learn the 
experimental contingency (Blanchard et al., 2013). Hence, 
our goal here is to approach the problem from the point of 
view of reward rate maximization, as in OFT. However, 
whereas OFT only considers future options inferred from 
the current choice as affecting decision-making, we show 
that it is the past that matters to estimate the cost of time 
so as to maximize long-term reward rates. 

To appreciate this difference in approach, let us start 
with the stated goal of OFT—to maximize long-term 
reward rates. As one cannot change the decisions made in 
the past, what is wrong with the seemingly reasonable 
notion in OFT that decision-making to maximize reward 
rate would be concerned only with the future, being 
wholly prospective in its outlook? An obvious constraint 
on so seeking to maximize long-term reward is that, in 
most decisions, one cannot know the future pattern of 
rewards beyond those currently available. But for the sake 
of argument, let us ignore this constraint and consider the 
case wherein an animal (or an agent) can see many 
choices (or trials) into the future. Specifically, let us 
consider an agent that can see ten future trials with each 
requiring a choice between different reward options. In 
order to achieve the stated goal of OFT, the agent will now 
have to calculate the optimal choice path across all ten 
trials. There is only one method to obtain the exact 
optimal solution: the agent will have to consider all 210 
possibilities to determine the option-path that leads to the 
highest reward rate. In other words, on choice number 1, 
the agent will have to consider the effect of that choice on 
all possible future choices, and so forth. Clearly, such an 
exact solution is computationally intensive, with the 
combinatorial explosion making it infeasible for an animal 
to perform this computation beyond some limited number 
of trials.  

Therefore, given that the exact solution is not 
attainable, how could one arrive at an approximate 
solution? Maximizing reward rate requires an animal to 
not waste time on a given trial, if that given trial presents 
options that are significantly worse than the environment 
as a whole. Hence, at its core, it requires the animal to be 
able to compare the reward rate available on a trial with 
the reward rate available on the session as a whole, so as to 
make an appropriate decision on that trial. A solution is to 
estimate the average reward rate of the ten known trials so 
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as to estimate the reward rate achievable in the session as 
a whole. However, this is only possible under the 
assumption that the future is knowable. Therefore, let us 
now revoke this unrealistic assumption. 

If the environment is assumed to be stationary (time-
independent statistics), an approximate solution can yet 
be to use the past as a model to predict the immediate 
future, as the correlation between the immediate past and 
the immediate future is likely high. Of course this 
approximation would work only if the environment is 
stationary in time. Let us call such an epoch of time, 
modeled by the animal to be stationary, as a “session”. An 
example is a typical experimental session in the laboratory 
with unchanging reward statistics. Hence, a simple 
approximate solution to maximize reward rates over the 
session can be to maximize the reward rates over the time 
that one has spent in the session, i.e. instead of 
maximizing the reward rate prospectively in the session, 
maximize the reward rate achieved in the session so far. 
This solution contrasts with the solution presented by OFT 
shown in equation (5) because equation (5) assumed that 
the net reward rate for a given option is the reward rate 
achievable if one chose only that option. Instead, we use 
the past to compare the worth of a given option to the 
environment as a whole. This is the rationale for our 
theory, named Training-Integrated Maximized Estimation 
of Reinforcement Rate (TIMERR). In the remainder of this 
section, we formalize the above argument and show the 
implications it has on choice behavior.  

2.2.1 The past matters 

An agent, as in Figure 2, presented with offers of reward 
that vary in magnitude and temporal displacement ((r1, t1) 
or (r2, t2)), may decide upon a given option by calculating 
which offer yields the highest rate of reward in the trial. By 
normalizing reward magnitudes by the times to their 
future acquisition, Option 1 (red bar) in this instance is 
found to have the highest trial reward rate. Trial reward 
rate is depicted graphically as the slope of the choice 
vector connecting the agent in the present moment 
(“now”) along the x-axis of time, to the magnitude of 
future reward (the slope of the red and blue vectors). 
Alternatively, an agent presented with the same offers of 
reward may decide upon a given offer by calculating which 
option yields the highest session, rather than trial rate of 
reward. Session reward rate is depicted graphically as the 
slope of the line connecting the agent on entry into the 

environment, its “past” self (grey circle) along the x-axis of 
time, to the magnitude of future reward. By normalizing 
the magnitude of a reward offered by the sum of the time 
already spent in the session plus the time to its future 
acquisition, Option 2 (blue bar) is found to have the 
highest session reward rate (slope of the blue vector). By 
comparing the choices made by the agents in A and B to 
the same reward offers, it is apparent that decision-making 
governed by trial and session rate maximization are not 
equivalent, as they can lead to opposite choice behavior. 
Hence, if the objective is to gather the most reward while 
within a given environment, the past does in fact matter, 
as even evidenced when only considering elapsed time in 
the environment.  

Hence, what it means to select a reward option that 
“maximizes the rate of reward” depends, as evidenced in 
the prior figure, on the objective of the agent. An agent 
that makes its current choice based on maximizing the 
session reward rate—by considering how much time it has 
already spent in the environment—will outperform an 
agent that is wholly prospective (without including a 
model of the future based on the past) in its decision-
making. Therefore, as a commonly stated goal within 
optimal foraging is to gather the most reward while within 
an environment, the former of the two agents would 
rightly be regarded as the rational of the two. 

If wholly prospective decision-making is not 
characteristic of rational decision-making, is exhibiting a 
consistency in choice behavior to the same reward options 
(like in DUT)? Consider an agent (as depicted in Figure 3) 
that maximizes the session rate of reward. When being 
presented reward options upon entering an environment, 
as in panel A, the session-rate-maximizing agent selects 
option 1. However, if a quantity of time were to have 
passed in the environment prior to the presentation of the 
same reward options, as depicted in panel B, at that 
moment, choosing either option would be regarded as 
equivalent. Indeed, were even more time to have passed in 
the environment prior to presentation of the same options 
(as in panel C), option 2 would be selected. In all cases, the 
reward options presented are the same, making choice 
behavior appear to be inconsistent across the same reward 
offers. Only from the perspective of selecting the option 
that results in the highest session reward rate can choice 
behavior be regarded as actually being consistent, 
resulting in different reward options being selected. 
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Figure 2. Does the past matter? A) Maximizing reward rate on a trial basis. An agent (black circle) presented with offers of reward that vary in magnitude 
and temporal displacement ((r1, t1) or (r2, t2)) may decide upon a given option by calculating which offer yields the highest rate of reward in the trial. By 
normalizing reward magnitudes by the times to their future acquisition, Option 1 (red vector) in the instance given is found to have the highest trial 
reward rate. Trial reward rate is depicted graphically as the slope of the vector connecting the agent in the present moment (now) along the x-axis of 
time to the magnitude of future reward. B) Maximizing session reward rate. Alternatively, an agent presented with the same offers of reward as that in 
(A) may decide upon a given offer by calculating which option yields the highest session, rather than trial-rate of reward. Session reward rate is depicted 
graphically as the slope of the line connecting the agent on entry into the environment—its “past” self (grey circle) along the x-axis of time—to the 
magnitude of future reward. By normalizing the magnitude of a reward offered by the sum of the time already spent in the session plus the time to its 
future acquisition, Option 2 (blue vector) is found to have the highest session reward rate. C) Comparing choice behavior governed by trial reward rate 
versus session reward rate. By comparing the choices made by the agents in A and B to the same reward offers, it is apparent that decision-making 
governed by trial and session rate maximization are not equivalent, as they can lead to opposite choice behavior. Hence, if the objective is to gather the 
most reward while within a given environment, the past does in fact matter, as even evidenced when only considering elapsed time in the environment.  

 
2.3 TIMERR algorithm 

Till now, we have considered the effect of the past on the 
valuation of reward offers under the special case that the 
agent has not acquired any (net) reward over that time. Of 
course, an agent may acquire reward in its past, and, 
should it have done so, the amount consumed need be 
taken into account in its current decision-making. Why is 
this so? In the prior figure, we provide an explanation as to 
why “looking back” in time would and should affect 
intertemporal decision-making even when the agent has 
not, to the present moment, accumulated any net reward. 
The benefit of looking back into one’s recent experience 
can be appreciated in another way, however, apart from 
simply the time spent in an environment, by considering, 
in addition, that a notion of experienced reward rate can 
be determined by normalizing the accumulated rewards 
harvested by the time spent harvesting in the 
environment. Therefore, one looks into the past not only 
to appreciate what interval reward rate should be 
maximized over, but to apprehend the rate of reward as 
already experienced in the environment. 

Consider the case where the experienced environment 
has been a net positive one, meaning that the sum of 
acquired rewards (denoted by R) over the “look-back” time 

(Time) has a positive value. Whatever the rate of reward 
experienced over this past look-back interval, offers of 
future reward must yield a rate greater than the 
experienced reward rate to ensure that the reward rate of 
the session increases. Therefore, looking back serves the 
purpose of determining the rate of reward that one should 
expect of an environment: reward options that decrease 
the experienced rate of return signify that they are subpar 
options that should not be taken. 

The rate of experienced reward can be incorporated 
into the graphical depiction as previously given for the 
(special) case—wherein the rewards accumulated in the 
environment sum to zero, as in Figure 3—to yield a 
depiction of the decision-making algorithm in the general 
case where accumulated reward can take on any value, be 
it positive or negative (Figure 4). As in Figure 3, the right 
hand y-axis in Figure 4 plots the magnitude of future 
reward offers. Also as in Figure 3 (though there not labeled 
as such), the left hand y-axis plots the magnitude of 
accumulated past reward, the value of which the 
backwardly pointing grey vector terminates. Whereas in 
Figure 3, the backward pointing grey vector points to a 
value of accumulated past reward equal to zero, in Figure 
4 it points to some positive value of accumulated past 
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reward, R, thereby shifting the origin of the left-hand y-
axis representing accumulated past reward downward. 
The rate of experienced reward (R/Time) is thus graphically 
depicted as the slope of the line connecting the agent’s 
past self with its current self (black vector). By depicting 
accumulated past rewards and future reward offers in this 
manner, the relationship between the past reward rate 
and the offered future reward rates can be seen to sum to 
yield the realizable session reward rates (the slope of the 
red and blue vectors). Given known reward offers, 
deciding between offers is then simply a matter of 
determining which opportunity yields the highest session 

reward rate, and, should it exceed the experienced reward 
rate, choosing that reward option. Expressed another way, 
offered reward rates are added to the experienced reward 
rates to determine session reward rates, the largest of 
which (so long as it exceeds that which is already 
experienced) is then selected. This can be expressed as the 
following choice algorithm: 

 
(7) 

 
 

 
Figure 3. The effect of “looking-back” different amounts of time in evaluating realizable session reward rates. A) No “look-back” time. Should a session-
reward-rate-maximizing agent look into its past no amount time (as potentially the case were it to have just entered into a foraging environment) it 
would choose Option 1 in the depicted example, as it yields the highest session reward rate. In this special case where Time = 0, evaluating reward options 
by maximizing session reward rate is equivalent to maximizing trial reward rate. B) Increasing Time (while decreasing the realizable session reward rates) 
does not affect the option chosen until Time reaches a value, as depicted in (B), wherein the reward options affect equivalent session reward rates. In this 
case, option 2 would be chosen as frequently as option 1. Growing the time in which the agent looks back into its past beyond this point results in a 
reversal of choice from Option 1 to Option 2, as depicted in (C). Therefore, the setting of Time critically affects the evaluation of delayed reward offers. 
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Figure 4. The TIMERR decision-making algorithm and its graphical depiction. The TIMERR algorithm can be understood simply as choosing the option 
that leads to the highest reward rate over the experienced interval within an environment up to and including the time to the future reward option. 
Reward accumulated within the environment (R) over the time the agent looks back into its past (Time) yields the experienced reward rate (R/Time, slope 
of the black vector) which is added to the reward rate of a future option (ri, ti) to yield a realizable reward rate having chosen that option. The agent then 
selects the realizable reward rate with the highest rate of return. A caveat is that the agent may forgo an option even if it evaluates to the highest 
realizable reward rate should that rate be less than the experienced reward rate (see section 2.2.5). Black circle: the agent at the present moment of time, 
“now”. Grey circle: the agent’s past self on entry into an environment at which time it has yet to accumulate any reward within it. Slope of the red and 
blue vectors: the realizable reward rates of the reward options ((r1,t1) (r2,t2)). Left-hand y-axis: the amount of accumulated reward in the environment 
from entry into the environment until the present moment, “now”. Backward-pointing grey vector: the magnitude of the grey vector indicates the time 
over which the agent looks into its past. Its termination points to the amount of reward so far accumulated over that interval of time. Right-hand y-axis: 
the magnitude of future reward options.  

 
Figure 5. Subjective value derived from the TIMERR algorithm and graphically depicted. Under the TIMERR conception, a future offer of reward of 
known magnitude and temporal displacement (r2, t2) is equivalent to an offer of reward presented at the current moment of time (r1, t1) that effectuates 
the same realizable session reward rates (the slope of blue and red choice vectors), as graphically depicted above. This graphical depiction of TIMERR, 
thus provides a ready visual means of apprehending the subjective value of any outcome; it is the y-axis intercept at the present moment of time (red 
circle with blue fill represents the subjective value of option1 being equivalent to the subjective value of option 2). Therefore, as subjective value is the 
magnitude of reward given now that is perceived as being equivalent to a larger later reward, the TIMERR algorithm can be used to derive an expression 
for subjective value by setting the future reward option (r2,t2) as equal to a present reward option (r1, t1) where t1 = 0) and solving for r1, the subjective 
value of the larger later offer. The expression for subjective value, so derived, is given in equation (8). Note that in this instance, reward options result in 
realizable session rates of reward that exceed the experienced reward rate (slope of the black vector) of the agent (black circle), and are accordingly 
positive subjective values. Were an option to result in a realizable session rate below the experienced rate of reward, its y-axis intercept would be 
negative, resulting in a negative subjective value.  
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2.3.1 Expressing the TIMERR algorithm in terms of 
subjective value 

Subjective value is the magnitude of reward available 
“now” (see Figure 5) that is perceived as being equivalent 
to a larger later reward. Indeed, decision-making using the 
TIMERR algorithm, rather than being a determination of 
session reward rate as in Equation (7), can alternatively be 
re-conceptualized as selecting the option offering the 
highest positive subjective value. In this re-
conceptualization of the TIMERR algorithm, the subjective 
value of a future reward option is equivalent to the 
magnitude of reward given “now” that yields the same 
session reward rate. Therefore, the graphical depiction of 
the TIMERR algorithm in the preceding figures provides a 
ready means of determining the subjective value of any 
presented offer: subjective value is the y-intercept of the 
offer’s session rate vector at the present moment of time. 

Consider the options presented in Figure 5. Option 2 is a 
reward of magnitude, r2, set to occur at a delay, t2, in the 
future. Selecting this option will yield a session reward rate 
given by the slope of the blue vector. Option 1 is a reward 
of magnitude, r1, occurring now (t = 0) that yields the same 
session reward rate as Option 2 (the slopes of the red and 
blue vectors are equal). As subjective value is the 
magnitude of reward given now that is regarded as 
equivalent to a larger later reward, setting t1 to zero and 
solving for r1 is solving for the subjective value of Option 2. 
Therefore, by so expressing reward options as an equality 
between a future offer and an offer presented now that 
yields the same session reward rate, the decision-making 
algorithm of TIMERR can be used to derive the subjective 
value of any reward. As shown in the figure, this can be 
expressed as 

 

(8) 

where aest = R/Time is the past reward rate, and SV(r,t) is the 
subjective value of a reward of magnitude r delayed by t. 

The derivation of subjective value from the TIMERR 
algorithm (Figure 5, Equation (8)) provides an opportunity 
to appreciate this deceptively simple process from a 
different perspective. The subjective value of a future offer 
is defined, in part, by the numerator, being the magnitude 
of the offered reward, r, less the amount of reward 
expected to occur in lieu of taking the offer. The amount of 
reward expected to occur in lieu of taking the offer is the 
opportunity cost, (aest t), which is determined by 
multiplying the experienced rate of reward (aest = R/Time) 
by the time required for the offered reward’s acquisition 

(t). The denominator is the explicit cost of time itself, and 
is notable in that the general form it takes bears 
resemblance to that of typical discounting functions, save 
for the fact that they have a free-fit parameter governing 
the steepness of discounting in time. Here, the discounting 
constant (like k in Equation (2)) for time is not a free-
fitting parameter of uncertain biological meaning but 
rather is the reciprocal of the look-back time, Time. By so 
expressing TIMERR in terms of subjective value, the 
experienced reward rate is understood as governing 
opportunity cost, whereas Time controls the steepness of 
temporal discounting.  

2.3.2 The effect of changing the look-back time, Time, 
and the magnitude of accumulated reward, r, on 
the valuation of given reward options.  

What then is the effect of different look-back times and 
magnitudes of accumulated reward on the subjective 
value of given reward options? Let us first consider the 
effect of the look-back time, Time, as we have in prior 
figures (Figures 2 and 3), but from the perspective of 
determining the subjective value of rewarding options. An 
agent, as in Figure 6, that looks-back a relatively large 
amount of time into its past to calculate its experienced 
rate of return in the environment regards the larger later 
reward option as the option with the highest subjective 
value. However, if the agent’s look-back time were to be 
less extensive, an intermediate value of Time exists that 
results in the agent regarding the same offers as 
subjectively equivalent. In the particular instance given in 
Figure 6B, the subjective values of option 1 and 2 are 
equivalent and have a value of zero, for choosing either 
option would neither advance nor retard the reward rate 
experienced in the environment. If Time were to be smaller 
still, the smaller earlier option would be evaluated as 
having the greater subjective value (Figure 6C). Therefore, 
the amount in which the animal looks back into its past 
affects choice behavior to what otherwise would be 
regarded as the same reward options, as mentioned 
previously.  

How does the amount of accumulated reward acquired 
by the agent over a fixed amount of time affect the 
evaluation of subjective value? Consider the agent with a 
fixed look-back time (Time) that is offered the same 
rewarding options in three different environments 
yielding low, modest, and high (Figure 6D-F) experienced 
reward rates. Having experienced a low rate of reward 
(Figure 6D), the offers presented are evaluated such that 
larger later reward option has the highest subjective value. 
In the modestly rewarding environment (Figure 6E), both 
offers are equivalent and have a value of zero, as choosing 
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either option, again, neither advances nor retards the 
reward rate experienced. Finally, in the higher reward 
environment (Figure 6F), the same reward options 
presented to the animal evaluate such that the smaller 
earlier option has the greater subjective value. Therefore, 
as with Time, the amount of reward accumulated (R = aestt) 

over that look-back time affects the evaluation of 
subjective value to the same rewarding options. The 
significance of these effects is that ostensibly inconsistent 
choice behavior may manifest from the consistent 
application of the TIMERR algorithm maximizing reward 
acquisition.  

 
 

 
Figure 6. The effect of changing the look-back time, Time, and the magnitude of accumulated reward, R, on the valuation of given reward options. (A-C) 
The effect of changing Time on the valuation of a pair of known reward options ((r1, t1), (r2, t2)) evaluates to different session rates of reward, and therefore, 
different choices, such that the agent in (A) that looks back a relatively longer amount of time selects option 2, whereas the agent in (B), looking back an 
intermediate amount of time regards the options as equivalent, and finally, where the agent in (C), that looks back a brief amount of time, selects option 
1. (D-F) The effect of varying the experienced reward rate (R = aestt) obtained from a low (D), modest (E), or high (F) reward environment, on the 
valuation of the same reward options. D) When having experienced a low rate of reward, the offers presented evaluate such that the larger later reward 
option is greatest. E) In a more rewarding environment, both offers evaluate to the same subjective value, being zero, as neither advances nor retards the 
reward rate experienced. F) In an even more rewarding environment, the same reward options evaluate such that the larger later reward yields the 
greater of the two subjective values. Parametrically changing the look-back time, Time, or the magnitude of accumulated reward, R, is thus shown to affect 
the experienced reward rate and therefore, the valuation of future reward options, thereby determining option selection.  
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2.4 When should an offered reward be forgone? 

When should reward options be foregone? TIMERR 
dictates that the option that yields the highest positive 
subjective value is chosen, so ensuring that the most 
reward possible is garnered while in the environment till 
now. Consider, for instance, the agent depicted in Figure 
7A, which, having experienced a net positive rewarding 
environment, is presented with reward options 1&2. In this 
case, the agent selects option 1, in that that option yields 
the highest achievable session reward rate, or equivalently, 
the highest subjective value (red circle). Should the agent 
have experienced an even greater reward rate (slope of 
black vector) after continuing to forage in the 
environment, as in Figure 7B, the same offers now evaluate 
to negative subjective values, as their session reward rate 
vectors now have negative y-axis intercepts. So, despite 
the fact that the offer’s session reward rates are positive, 
the agent should and would (if given the option) forgo the 
reward options presented in this instance, as they yield 
session rates of reward that are less than the experienced 
reward rate. 

2.4.1 Choosing a punishment over a reward? 

Presently, we have only considered intertemporal 
decision-making with respect to rewarding outcomes. Of 
course, behaviorally significant events can be not only 
rewarding but punishing as well. Faced with an option to 
choose a punishing or a rewarding outcome, would an 
agent ever choose the punishing one? The agent in Figure 
8A is presented such an option between a punishment at a 
short delay (r1, t1) and a reward at a long delay (r2, t2). If it 
has experienced a net positive reward environment as 
depicted, both offers in this instance evaluate to negative 
subjective values (as their realizable session reward rates 
are lower than that of the experienced rate of reward). 
Therefore, in keeping with the prior section, the agent 
would forgo both options. However, should the possibility 
of additional trials be contingent on completing the 
current one, as is often the case experimentally in forced-
trial designs, selecting the early punishment over the later 

reward would be optimal as it incurs the least cost. In this 
case, then, an early punishment would be chosen over a 
later reward.  

Might then a later punishment ever be selected over an 
earlier reward? Envision an environment where the net 
accumulated reward is negative (i.e., there is an 
experienced rate of punishment). As depicted in Figure 
8B, an agent in such an environment, given the options 
depicted between an early reward and a later punishment, 
would pick the later punishment. The agent would pick 
the later punishment because it effectuates the greatest 
positive change (greatest decrease in the rate of 
punishment) in the session reward rate, thereby 
expressing the highest positive subjective value.  

The examples in Figure 8A&B give insight into what 
circumstances lead to the unintuitive selection of earlier 
or later punishment over a reward. What, however, is the 
effect of changing the environment to a net negative one 
on the valuation of given offered rewards, as in Figure 
8C&D? In Figure 8C the agent is in a net neutral 
environment and is given an option between two rewards 
that are of the same magnitude, but displaced in time. 
Here, the subjective value of the early option is the 
greatest, as the added cost of time diminishes the 
subjective value of the equally sized, later reward. 
However, presented with the same reward options but 
now when having experienced a net negative rewarding 
environment, the same agent selects the later over the 
earlier reward. Why? In this case, it is not only the 
magnitude of reward that decreases the rate of 
punishment, but also its associated delay; time, rather 
than having an associated cost, can under some 
circumstances have an associated gain.  

These instances, albeit unusual, are instructive in that 
no trial-reward-rate-maximizing agent would ever choose 
to forgo a reward option (as in section 2.2.5), nor select the 
punishment option (as in this section), nor pick a later 
instance of an equivalently sized reward. 
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Figure 7. When should an offered reward be forgone? A) An agent, having experienced a net positive rewarding environment, is presented with reward 
options 1&2 and selects option 1 as it yields the highest session reward rate, or equivalently, the highest subjective value (red circle). B) The same reward 
options presented again to the agent, but subsequent to having obtained a higher experienced rate than that in (A), are now forgone, as their respective 
realizable session reward rates are less than the experienced reward rate, and thereby evaluate to negative subjective value. So, despite the fact that the 
offer’s session reward rates are positive, the agent forgoes the reward options presented in the instance presented, as its experience in the environment 
indicates that a superior reward option is expected to occur in the future. The environment shown here is similar to that shown in Figure 6F. Hence, even 
in Figure 6F, if the agent had an option to choose either reward or forgo both, both would be forgone.  
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Figure 8. Choosing a punishment over a reward? A) Given a net rewarding environment, outcome options between an early punishment and a later 
reward may be presented to an agent such that evaluation of the outcomes yields a higher subjective value for the early punishment. In this case, note 
that the subjective values of either offer are negative, and therefore would be forgone by the agent. However, if continuation of foraging for reward is 
contingent on making a choice between the options at hand (as is commonly the case in forced-choice experiments), the agent would select the early 
punishment as it incurs the least cost to the animal. B) Conversely, an agent may choose a later punishment over reward were it to have been 
experiencing a net negative reward (punishing) environment. In the case depicted, the later punishment is selected as it has the highest subjective value. 
C&D) When might an agent prefer a later reward of a given magnitude over an earlier reward of the same magnitude? C&D depict the case where an 
agent selects the earlier reward in one case (C; a net neutral environment) and the latter reward in another (D; a net negative rewarding environment).  

2.4.2 Re-expressing subjective value as a discounting 
function, and the effect of Time. 

The degree to which one looks back into the their past as 
well as the magnitude of reward accumulated over that 
time have both been shown to fundamentally affect the 
valuation of future rewards; yet, we have not 
systematically examined the effect of delaying a given 
outcome on its valuation. Consider the agent in Figure 9A 
that has experienced a net positive reward, R, over its look-
back time, Time. If presented a reward of magnitude (r) at 
the present moment of time, how does this reward’s 
temporal displacement into the future affect its valuation? 
From the perspective of its realizable reward rate in the 
environment, this rate (the slope of the blue vectors) 
decreases as the reward is displaced further into the 
future. Equivalently, for each delay examined, the 
subjective value can be calculated (Equation (8), see -
Figure 5) and appreciated graphically as the corresponding 
vector’s y-intercept at the present moment of time 
(“now”). As a given sized reward recedes into the future, its 
subjective value correspondingly drops with a decreasing 
rate. Indeed, by re-plotting the subjective values to their 
respective delays, as in Figure 9B, the manner by which 
subjective value decreases with time can more readily be 
appreciated; it is in fact—when expressed as a fraction of 
the actual outcome magnitude—the “temporal 
discounting function”. The discounting function is thus 
expressed mathematically as 

 

(9) 

By so re-expressing subjective value, evaluation of an offer 
by the TIMERR algorithm can be understood in terms of 
an apparent discount function. One need note, however, 
that the drop with time of 1) the slope of realizable reward 
rate, 2) the subjective value, and 3) the discounting 
function are all mathematically equivalent means of 
understanding the TIMERR algorithm. So, while 
expressing intertemporal decision-making by TIMERR in 
terms of a discounting function is of use in relating it to 
established notions of discounting functions, from the 

perspective of the TIMERR algorithm, there is no 
requirement to actually have a discounting function. As 
such, its observation is but a consequence of the TIMERR 
algorithm rather than evidence of an entity (with agency) 
that is applied to offers so as to determine their subjective 
value, as commonly held. Nonetheless, the shape of the 
apparent discounting function that derives from the 
TIMERR algorithm is hyperbolic in form, according well 
with the preponderance of experimental observation (e.g., 
Ainslie, 1975; Ainslie & Monterosso, 2003; Kalenscher & 
Pennartz, 2008; Loewenstein & Prelec, 1992).  

An important feature of TIMERR then, is that the 
apparent discount function is controlled by the amount of 
time that the agent looks back into its past, Time. The effect 
of looking back in time on the steepness of discounting is 
readily apparent by comparing Figure 9A&B to panels 
C&D. The longer the agent looks back, the more patient 
the agent appears to be, being more willing to wait for the 
same magnitude of reward at a greater temporal delay. 
Conversely, the less the agent looks back into its past, the 
more impulsive, seemingly, the agent. Therefore, whereas 
extant models of temporal discounting inject a free-fit 
parameter of unknown biological meaning so as to best 
approximate experimental observation, the feature that 
wholly controls the steepness of discounting in the 
TIMERR conception is the degree to which the agent looks 
back into its past. 

2.4.3 The Magnitude Effect 

The applicability of the TIMERR conception to 
understanding intertemporal decision-making rests on 
making an accounting for hallmark observations well 
established in the behavioral literature. Above, we have 
ascertained that the appearance of hyperbolic discounting 
would be observed in an agent that operates in a manner 
consistent with the TIMERR algorithm. Since the TIMERR 
algorithm maximizes reward under experiential 
constraints, temporal discounting that exhibits a 
hyperbolic form resulting from TIMERR is not irrational, 
but rather reward maximizing. Might other so-called 
“anomalous observations” (in economics, see Frederick et 
al. (2002), Kalenscher and Pennartz (2008), 
andLoewenstein and Prelec (1992) for reviews) in 
intertemporal-decision making be similarly predicted by 
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the TIMERR algorithm, and if so, be shown not to be 
deficiencies in, but rather signs of, rational decision-
making?  

One such hallmark observation is that of the 
“magnitude effect”, wherein the steepness of observed 
temporal discounting is dependent on the magnitude of 
the offered reward, such that larger rewards exhibit 
shallower discounting than smaller rewards. Might the 
magnitude effect be a natural consequence of the TIMERR 
algorithm? As in the prior figure, subjective value can be 
determined for a reward of a given magnitude that is 
arrayed across temporal delays (Figure 10A), and re-

plotted as a temporal discounting function (Figure 10B). 
Consider, now, the subjective values for a reward half that 
magnitude arrayed across the same range of delays (Figure 
10C). By similarly re-plotting subjective values, normalized 
to the magnitude of the offer as before, it is apparent that 
the steepness of discounting decreases the larger the 
offered reward magnitude (Figure 10D). Therefore reward 
rate maximization while in an environment results in the 
appearance of a discounting function that is sensitive to 
the magnitude of offered reward.  
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Figure 9. Subjective value expressed as a discounting function, and, the effect of Time. A. The realizable reward rate (the slope of the blue vectors) of an 
offer of magnitude, r, starting from the present moment and arrayed at fixed intervals into the future (black dots), is depicted for an agent that has 
accumulated a total reward R, over its look-back time, Time. Red dots along the “now” y-axis indicate the subjective value of the offer at corresponding 
delays (the magnitude of the offer needed now that would be treated as subjectively equivalent to the later larger reward). Note that as the offer recedes 
in time, the realizable reward rate, and therefore subjective value, correspondingly drops, but diminishingly so. B. Expressing the subjective values 
derived in (A) in terms of a discounting function. By replotting the subjective values of the reward option, r, across fixed intervals of t, to their 
corresponding delays, the drop in subjective value of a given offer with time can be appreciated. Note, here, that the y-axis, equivalent to that shown in 
(A), is now re-expressed as subjective value per unit of offered reward. The resulting temporal discounting function is hyperbolic in shape, according 
with the preponderance of experimental observation. C. The effect of looking back more distantly into the past. For the same offers of reward as that 
considered in (A), an agent looking back more distantly into its past (but experiencing the same accumulated reward) will evaluate those offers as having 
higher realizable rates of return and therefore correspondingly higher subjective value (purple dots along the y-axis, “now”). Replotting those subjective 
values as in (B), one then observes that agents that look back over greater stretches of time into their past, treat nominally the same reward offers as 
being more valuable, and therefore generate apparent discounting functions that are less steep. In short, the larger the value of Time, the less steep 
apparent discounting; alternatively, the more patient the agent. E) Discounting Function. Discounting functions convey subjective value (SV(r,t)) of an 
offer as a function of time, expressed as a fraction of the offer’s outcome magnitude. Replacing SV(r,t) for the right-hand side of equation (8) and then 
simplifying yields the TIMERR algorithm expressed as a temporal discounting function (Equation (9)). Of central importance is that the term controlling 
the steepness of temporal discounting function is not a free-fit parameter of uncertain biological meaning but rather is the reciprocal of the look back 
time of the animal (1/Time).  

 
Figure 10. The Magnitude Effect is a consequence of experientially constrained reward rate maximization as conceptualized by TIMERR. A) Realizable 
reward rates (the slope of blue vectors) to a reward of a given size but arrayed in time illustrates how the rate of return decreases, diminishingly, as the 
reward recedes in time. The subjective value of each offer can be found as its y-intercept at the present moment (“now”). B) Discounting function of the 
temporally arrayed offer in (A). By replotting each subjective value to its corresponding temporal interval, subjective value is observed to decrease 
hyperbolically with temporal delay. C) Realizable reward rates are again plotted but to a reward arrayed through time of half the magnitude as that in 
(A). The subjective value of each offer is again found as its corresponding y-intercept at the present moment (“now”). D) The discounting function of the 
temporally arrayed offer in (C, purple) compared to that derived in (B, red) demonstrates that the steepness of discounting is less steep for the larger of 
the two rewards, i.e., the “Magnitude Effect”. Subjective value is normalized to the reward magnitude when plotting the discounting function. 
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2.4.4 The Sign Effect 

Another so-called anomalous behavior observed in 
intertemporal decision-making is that of the “sign-effect” 
wherein outcomes of equal magnitude but opposite sign 
are observed to discount at different rates; specifically, 
that rewards discount more steeply than punishments. 
The origins and necessary conditions of this effect are 
evident in the graphical depiction of TIMERR in Figure 
11A-C. Here, an agent considers rewards and punishments 
of equal magnitude arrayed into the future under three 
different environments: net positive (Figure 11A), net 
negative (Figure 11B), and net neutral (Figure 11C) outcome 
environments. Within the first environment (Figure 11A), 
the agent has experienced a net positive accumulation of 
reward, R, over its look back time, Time, and therefore has a 
positive experienced rate of reward (black vector). 
Following prior convention, realizable reward rates given 
any outcome selection are depicted as the slope of the 
choice vectors (blue) connecting the agent’s past self to its 
future self having chosen an option. The intersection of 
these choice vectors with the y-axis at the present moment 
of time yields the outcomes’ respective subjective values. 
Re-plotting these subjective values to their corresponding 
temporal delays produces the temporal discounting 
functions for the positive and negative rewards (as all 
outcomes considered are of unit magnitude, the y-axis of 
subjective value is equivalent to a y-axis of subjective 
value normalized by unit outcome magnitude). The origin 
of the sign-effect in a net rewarding environment is then 
understood as the effect of reward magnitudes 
countermanding opportunity cost, while punishment 
magnitudes exacerbating opportunity cost. 

In Figure 11A we note that the sign-effect arises due to the 
opposite impact of magnitude of rewards and 
punishments on opportunity cost. Suppose, however, that 
an agent has experienced a net negative (punishing) 
environment (Figure 11B). Should the sign-effect be 
observed? In that outcomes of equal magnitude but 
opposite sign are observed to discount at different rates, 
yes, a sign-effect would, under the TIMERR conception, be 
observed. However, should the “sign-effect” be defined as 
rewards discounting more steeply than equally sized 
punishment, then no. Rather, TIMERR predicts that in net 
negative environments it is punishments that discount 
more steeply than equally sized rewards. The sign of the 
“sign-effect” flips in net negative environments. Why? 
Whereas in net rewarding environments there is an 
opportunity cost associated with any reward in time, in 
net punishing environments there is an opportunity gain 
associated with any punishment in time. Therefore, the 
origination of this sign-effect in a net punishing 
environment is understood as the effect of punishment 
magnitudes countermanding opportunity gain, whereas 
reward magnitudes combine with opportunity gain.  

What then of the sign-effect if the agent has experienced 
a net neutral reward environment? In this case (Figure 
11C) there is no opportunity cost/gain associated with any 
reward or punishment. Therefore, rewards and 
punishments of equal magnitude neither countermand 
not exacerbate opportunity cost, leading to discounting 
functions that are equivalently steep. An important aspect, 
then, in determining the presence, severity, and sign of the 
sign-effect is the nature of the outcome environment 
experienced. In conclusion, the “sign effect” (Frederick et 
al., 2002; Kalenscher & Pennartz, 2008; Loewenstein & 
Prelec, 1992), as the “magnitude effect” (Frederick et al., 
2002; Kalenscher & Pennartz, 2008; Loewenstein & Prelec, 
1992), is a consequence of experientially constrained 
reward rate maximization as conceptualized by TIMERR, 
not a flaw in rational decision-making. 
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Figure 11. The “Sign Effect” as explained by the TIMERR conception, in net 
positive, negative, and neutral reward environments. A. The sign-effect in 
a net positive reward environment. Experienced reward history generates 
a bias in evaluating equivalently sized outcomes of opposite sign, leading 
to an apparent discounting function for rewards that is less steep than 
that for punishments. B. The “sign-effect” as predicted by TIMERR for an 
agent having experienced a net negative reward environment also 
exhibits asymmetric discounting functions for rewards and punishments, 
yet here, punishments rather than rewards discount less steeply, i.e., the 
sign of the sign-effect is reversed. C. The absence of a net positive or 
negative reward experience leads to the absence of bias in evaluating the 
worth of rewards and punishments. Under this condition, outcomes of 
equivalent magnitudes, be they rewards or punishment, discount at the 
same rate. Therefore, given a net neutral reward experience within an 
environment, the sign effect will not be observed.  

2.4.5 New perspective on the meaning of the terms 
in Equation (9) 

In the above sections, we have treated Time as representing 
the total time an agent has spent within a session, and aest 
as the ratio of the total reward achieved during this time to 
Time. However, real animals face at least three major 
constraints that limit the validity of this interpretation: (1) 
their reinforcement environments are not stationary; (2) 
there is increasing computational and metabolic costs 
associated with integrating over a long time, and, (3) 
indefinitely long intervals without reward cannot be 
sustained by an animal (while maintaining fitness) even if 
they were to return the highest long-term reward rate (e.g., 
choice between 10,000,000 units of food in 100 days vs. 10 
units of food in 0.1 day). Hence, we think that the duration 
of Time is more appropriately thought of as a “past 
integration interval” over which recent reward history 
(aest) is estimated, instead of the total time spent in an 
environment. The value of Time might in fact need to be 
adjusted to the current environment so as to make optimal 
decisions (see Section 4 for a longer discussion). Further, it 
must be pointed out that the past reward rate (aest) might 
not be as simply estimated as the ratio of the rewards 
accumulated over Time, to Time. This would imply that 
rewards obtained just beyond Time have zero contribution 
to the past reward rate whereas all rewards obtained 
within Time contribute fully. In fact, we have showed 
previously that if the updating of the past reward rate has 
to be done locally (without storing every past reward’s 
magnitude and time of receipt in memory), the past 
reward rate has to be calculated using an exponential 
weighting function (see Namboodiri et al., 2014) for further 
discussion). Hence, since Time is the effective duration over 
which past reward rates are estimated, we will refer to it 
from here on as the “past integration interval” and not the 
“look-back time” as in prior sections. 

2.4.6 Connection to experimental data 

In this section, we review experimental data from a wide 
array of fields that can be systematized by our theory. For 
this purpose, we treat typical human and non-human 
animal experiments separately as typical human 
experiments differ from animal experiments in one 
fundamental way: humans are often given hypothetical 
rewards involving hypothetical delays. However, animals 
face real rewards requiring real investments of time. We 
will first cover non-human animal experiments. But before 
considering them separately, we will first discuss 
commonalities in animal and human experiments. In both 
groups, hyperbolic discounting has provided better fits to 
data than exponential discounting functions (e.g., Ainslie, 
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1974, 1975; Ainslie & Monterosso, 2003; Benzion et al., 1989; 
Calvert et al., 2010; Green et al., 1994; Holt et al., 2003; 
Kobayashi & Schultz, 2008; Rachlin et al., 1972; Thaler, 
1981), as predicted by DUT (however for an exception, see 
Schweighofer et al., 2006). Our theory fits with this 
observation as Equation (9) predicts a temporal 
discounting function that is a hyperbolic discounting 
function minus a constant (aestTime) that depends on the 
immediate reinforcement history. 

Another finding that is consistently observed across 
humans and non-human animals is variability in the 
discounting steepness within and across individuals (e.g., 
Ainslie, 1974, 1975; Ainslie & Monterosso, 2003; Benzion et 
al., 1989; Blanchard et al., 2013; Calvert et al., 2010; 
Frederick et al., 2002; Green et al., 1994; Holt et al., 2003; 
Jimura et al., 2009; Kobayashi & Schultz, 2008; Myerson & 
Green, 1995; Odum, 2011; Pearson et al., 2010; Rachlin et al., 
1972; Richards et al., 1999; Rosati et al., 2007; Shamosh et 
al., 2008; Thaler, 1981). While common accounts of such 
variability invoke differences in “personality” (or other 
psychological/neurological) traits (e.g., Bickel et al., 2007; 
Kalenscher & Pennartz, 2008; Madden & Bickel, 2010; 
Odum, 2011; Richards et al., 1999; van den Bos & McClure, 
2013), we ascribe it a more functional meaning: variability 
across subjects reflects variability in the past integration 
interval, appropriate for the individuals’ respective reward 
environments. Relatedly, apparent differences between 
subjects may actually reflect differences in experienced 
past reward rate (aest in Equation (9). Nonetheless, some 
variability across subjects may yet lie in subjects’ innate 
neural differences, independent of their environment or 
experience. 

2.4.6.1 Data from non-human animals 

A fundamental prediction of Equation (9) is that the 
discounting steepness will depend on the past reward rate. 
This means that, for instance, when the duration between 
rewards is increased, animals should become more 
tolerant to delays, since the longer the duration between 
rewards, the lower the past reward rate and therefore, the 
lower the discounting steepness (Figure 6). Data from 
(Blanchard et al., 2013) discussed in Section 2.1 support this 
prediction. As mentioned above, they observed lower 
levels of discounting steepness when the post-reward 
delays (equal for both options in experiment 3) were 
increased. Since they wished to use this observation to 
advance a rate-maximizing equation such as Equation (5), 
they had to further assume that representations of post-
reward delays are biased. As discussed earlier, this is not 
consistent with many other experimental results on time 
perception (e.g., Buhusi & Meck, 2005; Matell & Meck, 

2004). A simpler explanation for their data, within a 
reward-rate maximizing framework is the one we’ve 
proposed. Another paper that observes a similar effect in a 
different task is Mazur and Biondi (2011). In their study, 
they found that the delay at which a delayed reward is 
treated as equivalent to a standard reward of fixed 
magnitude and delay, depended on the intertrial interval, 
again consistent with the effect of reducing past reward 
rates.  

Another key prediction of Equation (9) is the 
“magnitude effect”, as shown in Figure 10. Before 
considering experimental evidence addressing whether 
animals show “magnitude effect”, note that in Figure 10, 
we assumed the past reward rate to be constant, or at least 
equal for both reward options. Is this assumption valid in 
interpreting results from experiments? 

There are two kinds of experimental designs used to 
study “magnitude effect” in animals. One is an “adjusting-
amount” or “titration” procedure. In this design, a standard 
reward option (with fixed delay and magnitude) is 
compared against an option with an immediate reward 
with varying magnitudes. The magnitude of the second 
option is adjusted depending on the animal’s previous 
choice. If the animals choose the second option, then its 
magnitude is decreased and vice-versa. Discounting 
functions obtained from such experiments did not show 
any difference in the indifference point—the magnitude 
at which both options are treated equivalently—for 
different magnitudes of the standard option (e.g., Calvert 
et al., 2010; Freeman et al., 2009; Green et al., 2004; Green 
& Myerson, 2004; Richards et al., 1997). Therefore, these 
authors conclude that there is no observable “magnitude 
effect”. Another kind of experimental design used to study 
“magnitude effect” in animals is a “concurrent chains task” 
(Grace, 1994, 1999; Grace et al., 2012; Kinloch & White, 
2013; Ong & White, 2004). In this design, animals 
responded to concurrently available options (keys to peck, 
for instance) in a “choice phase” so as to access one of two 
reinforcement schedules (different rewards at differing 
delays) in an “outcome phase”. In the earlier versions of 
this experiment (Grace, 1999; Ong & White, 2004), the 
magnitude for both options was equal in one block. Once 
preferences at that magnitude were measured, 
observations were repeated for a different magnitude. In 
both the above types of experiments, it is clear that when 
the magnitude under study was large, so was the past 
reward rate. Looking back at Equation (9), it is evident 
that when the past reward rate is proportional to the 
reward magnitude, the effect of the reward magnitude 
cancels out such that there will be no “magnitude effect”. 
Interestingly, when the above authors repeated the 
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“concurrent chains” design with a simultaneous change of 
magnitude and delay, they observed a “magnitude effect” 
in pigeons as well as humans (Grace et al., 2012; Kinloch & 
White, 2013). While this result has not been explained yet, 
it has a straightforward explanation in our framework: 
when both magnitude and delay are changed across 
reinforcement schedules, the past reward rate will not be 
simply proportional (aest would still show a positive 
correlation with r) to the reward magnitude, as when only 
the magnitude was changed. Hence, the aest/r term in the 
numerator of Equation (9) does not cancel out, revealing 
the “magnitude effect”. 

It is important to point out that a descriptive model of 
discounting that has been recently proposed (Killeen, 
2009) can indeed fit the “magnitude effect” data in Grace 
et al. (2012), along with an earlier descriptive model 
(Grace, 1994). Interestingly, Killeen’s additive utility model 
has mathematical similarities to Equation (9). Yet there is 
no explanation for why there is an additive term in this 
model. In our theory, a subtractive opportunity cost 
automatically emerges as a direct consequence of 
experientially informed rate maximization. Precisely due 
to this difference, our theory also predicts that in 
experimental designs where the subtractive opportunity 
cost term is directly proportional to the reward 
magnitude, there will be no observed “magnitude effect”. 
Such data cannot be explained by the additive utility 
model.  

Another prediction of Equation (9) is the “sign effect”, as 
shown in Figure 11. This prediction is however, 
methodologically challenging in animals since it is difficult 
to create punishments of equal magnitudes as rewards. 
Nevertheless, it has strong support in human data, as will 
be discussed in the next section. 

The most important prediction, however, of Equation 
(9) is as yet untested. This is the prediction that as the 
duration over which past reward rates are estimated 
increases (or decreases), the steepness of temporal 
discounting decreases (or increases). This will provide the 
direct falsifiable test of our theory. However, as discussed 
in the next section, some indirect evidence from humans 
supports the above prediction. 

2.4.6.2 Data from humans 

As mentioned earlier, our theory, TIMERR, was developed 
in the context of optimal foraging, as we hoped to find an 
evolutionary argument for discounting. It is in fact derived 
from the same starting postulate as Optimal Foraging 
Theory—that animals evolved to maximize reward rates 
(the key difference being that while OFT holds that only 
future reward values matter, TIMERR uses the past to 

inform the maximization of reward; in some sense, an 
algorithm for infinite-time-horizon maximization of 
reward rates, as postulated in OFT, can be thought of as 
TIMERR with Time = ∞). Hence, the theory was developed 
assuming that tasks faced by animals involve real rewards 
which require real investments in time. Crucially, all 
animal tasks that we are aware of require the animals to 
invest the delay solely for the purpose of collecting an 
offered reward. In other words, in animal tasks, they 
cannot go about their daily lives seeking other 
opportunities for reward while waiting for the promised 
reward to become available. This is, however, different for 
typical human tasks (see Frederick et al., 2002; Kalenscher 
& Pennartz, 2008 for a review). In typical human tasks, 
one is asked hypothetical questions involving hypothetical 
delays. Let us consider an example: “what would you 
prefer: $10 in an hour or $20 in four hours? After the 
chosen delay expires, we will come find you and pay you 
the amount”. From anecdotal experience, we have 
observed that most people prefer $20 in four hours. How 
does this vary from typical animal tasks? To see this 
difference, let us now consider a different question: “what 
would you prefer: $10 for waiting in line for an hour or $20 
for waiting in line for four hours? If you wait for the delay, 
the reward delivery is certain”. Interestingly, the choice in 
this question is typically the former: most people do not 
want to invest the real four hours for obtaining just $20. 
Even more interesting was the observation that anyone 
that tended to still favor the $20 was a (poor) graduate 
student, or currently unemployed. This too, makes sense. 
If one’s hourly salary is being cut during the wait time, a 
rich CEO would never wait four hours for $20, whereas a 
graduate student might gladly do so because his/her 
opportunity cost for waiting is close to zero. This 
experiment, though anecdotal, immediately makes it 
intuitive that animal experiments are different from 
typical human experiments involving hypothetical 
questions. It also intuitively explains why it is important 
for animals to include opportunity costs in their decisions. 
TIMERR goes beyond this simple realization only in 
deriving that the effective time interval over which 
opportunity costs are calculated directly determines the 
steepness of temporal discounting, in addition to the 
opportunity cost itself. 

In light of this realization that opportunity costs are not 
directly enforced in typical human tasks, how can TIMERR 
explain such data? Does Equation (9) apply to such 
decisions? We reason that the mathematical form of 
Equation (9) would still apply to such decisions but the 
meaning of the terms might be different. Specifically, we 
believe that Time would still be a past integration interval, 
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but instead of it being determined by the experience of the 
subject, it might be determined by the hypothetical choice 
at hand. For instance, when one considers choices 
involving delays of seconds versus choices involving delays 
of hours, the past integration interval would adjust flexibly 
so as to provide an appropriate time frame for the 
question at hand. Perhaps this underlies the observation 
that when average delays are long, temporal discounting is 
correspondingly shallow, compared to when the average 
delays are short (e.g., Carter et al., 2010; Frederick et al., 
2002; Jimura et al., 2009; Kable & Glimcher, 2007; 
Kalenscher & Pennartz, 2008; Loewenstein & Prelec, 1992; 
Luhmann et al., 2008; McClure et al., 2004; Rosati et al., 
2007; Schweighofer et al., 2006). 

The numerator of Equation (9), on the other hand, has a 
subtractive term which reflects the opportunity cost of 
waiting. Since there is no real waiting required, one might 
suppose that opportunity costs may not exist in such 
decisions. However, the subtractive term in the numerator 
of Equation (9) could arise due to two possible reasons: 1) 
even though such choices are typically one-shot, it might 
be implicitly assumed that the choices will repeat, such 
that an opportunity cost based on the presented options 
(e.g., average reward rate of the presented options) is 
automatically included in the decision, or alternatively, 2) 
humans could incorporate a model of linear risk into such 
decisions.  

In the former possibility, the subjective value of a 
delayed reward would still be given by Equation (9), but 
with the aest term representing the average reward rate 
modeled based on the current environment (i.e., current 
options). A prediction of this account would be that every 
option presented on a given choice will affect the decision; 
in a choice between two options, adding a third decoy 
option worse than both should have an effect on the 
choice. A similar observation (though not in intertemporal 
decisions) is commonly known as the “decoy effect” or the 
“asymmetric dominance effect” in marketing (e.g., Huber, 
Payne, & Puto, 1982), wherein adding a decoy option 
(inferior in all respects to one option but not easily 
comparable to the other) automatically shifts preference 
towards the option that is superior to the decoy. For a 
longer discussion on how decisions between options are 
made in relation to the environment, see Ariely (2008). 

To explain the second possibility of a linear risk, let us 
consider an example: “you are offered a bag of M&M’s 
candy containing 100 candies, available to you after 15 
minutes. However, during the 15 minutes, the bag is left 
open on a table in the hallway. How many candies would 
you expect to receive after 15 minutes?” If one assumes 
that there is a constant probability of 0.5 that everyone 

walking by the hallway will pick a candy each, and one 
expects 20 people to walk by the hallway in 15 minutes, the 
expected number of candies will be: 100 – 0.5*20*1 = 90. If 
the bag were left out for a time long enough that at least 
200 people are expected to pass by, the number of candies 
left would be zero. 

Thus, the simplest model of risk involved in delaying a 
reward is that the offered reward reduces in magnitude at 
a constant linear rate over time, i.e. 

 
(10) 

If humans do include such a risk model in their decisions, 
the expected reward that can be collected after waiting the 
given delay of t will be r(t) = r-kt. If they simply calculate 
the net expected reward rate by dividing this quantity by 
the past integration interval plus the delay t (just like in 
the earlier treatment of TIMERR), their subjective value 
will look like Equation (9), with the linear opportunity 
cost term (aestt) being replaced by kt, i.e. 

 

(11) 

Hence, the mathematical predictions from Equation (9) 
like “magnitude effect” and “sign effect” would still hold. 

We do not know why a risk model such as the one 
envisaged in Equation (10) would be applied in these 
hypothetical questionnaire tasks. Nevertheless, a similar 
risk model has been assumed in a recent descriptive 
model of discounting (Killeen, 2009). Also, see our 
previous paper (Namboodiri et al., 2014) for more complex 
models of risk. Mathematically, the two possibilities 
mentioned above are equivalent and result in the same 
predictions presented earlier. 

Numerous reports provide evidence of the “magnitude 
effect” (Benzion et al., 1989; Frederick et al., 2002; Green et 
al., 1994; Green et al., 1997; Thaler, 1981) and the “sign 
effect” (Benzion et al., 1989; Frederick et al., 2002; Thaler, 
1981) in humans. This has also been repeated using real 
rewards, instead of hypothetical rewards. In fact, a recent 
paper using a task typically done by animals (“concurrent 
chains task” mentioned in Section 2.2.11.1) in humans 
choosing between hypothetical rewards also showed a 
clear “magnitude effect” (Kinloch & White, 2013). Another 
prediction of TIMERR is that the size of the “sign effect” 
will be larger for smaller magnitudes (see Consequences of 
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the Discounting Function in the Appendix of Namboodiri et 
al., 2014). This too is supported by experiments (Benzion et 
al., 1989; Loewenstein & Prelec, 1992; Thaler, 1981). Further, 
Equation (9) predicts that a magnitude-like effect for 
losses (in net rewarding environments) will be in the 
opposite direction as that for gains, i.e. losses of larger 
magnitudes will be discounted steeper than losses of 
smaller magnitudes. This was recently tested by Hardisty 
et al. (2012) and found to be true.  

Yet another prediction similar to the above effects is 
that losses will be treated differently depending on their 
magnitude (see Consequences of the Discounting Function 
in the Appendix of Namboodiri et al., 2014). Specifically, a 
smaller loss (a loss smaller in magnitude than the 
magnitude of the accumulated reward) will become even 
more of a loss when delayed, whereas a larger loss 
becomes less of a loss with additional delay. Such a 
differential treatment of losses is also widely observed in 
experiments (Benzion et al., 1989; Berns et al., 2006; 
Loewenstein, 1987; Mackeigan et al., 1993; Mischel et al., 
1969; Redelmeier & Heller, 1993; Yates & Watts, 1975). The 
above experiments rationalize this result as resulting from 
increased “anticipation” of losses (e.g., see Loewenstein, 
1987). However, we do not have to make such ad-hoc 
justifications; it is a natural consequence of reward rate 
maximization, as in our theory. 

Another “anomalous” observation (from the perspective 
of DUT) is the “delay-speedup effect” (Benzion et al., 1989; 
Loewenstein, 1988; Loewenstein & Prelec, 1992). This refers 
to the observation that subjects expect more 
compensation for delaying receipt of a reward (from t1 to 
t2) than they are willing to pay to speed it up by that same 
amount (from t2 to t1). There are two potential 
explanations for this phenomenon. One explanation, as 
previously noted by (Killeen, 2009) is that it could simply 
be a consequence of recursive discounting, i.e. the 
subjective value of a reward delayed from t1 to t2 is the 
subjective value of the reward at t1 discounted again by the 
additional delay of t2-t1. Thus, a reward expected at t1 when 
delayed to t2 has a subjective value lower than a reward 
expected at a delay of t2. We will not mathematically prove 
this property here for Equation (9) since it is 
straightforward. One problem, however, with this account 
(and the one presented in (Killeen, 2009)) is that if t1 were 
zero, there is no predicted “delay-speedup effect”, even 
though experiments clearly demonstrate an effect even 
when t1 = 0 (Benzion et al., 1989; Loewenstein, 1988; 
Loewenstein & Prelec, 1992). Another potential 
explanation is that whenever subjects are told that they 
have “received a reward at time t1”, they automatically 
incorporate the receipt of that reward into the risk term in 

Equation (11). This is more easily understood with the 
M&M’s example. The “delay” experiment goes thusly: 
“imagine you have received 100 M&M’s. How many more 
M&M’s should I give you such that you are willing to delay 
receipt by 15 minutes?” Going back to the calculation 
above, if you expect that in 15 minutes, the actual number 
of M&M’s you receive is 90 (since 20 people take one each 
at 0.5 probability), you will require compensation for this 
assumed reduction as well. On the other hand, the 
“speedup” experiment goes thusly: “imagine you will 
receive 100 M&M’s in 15 minutes. How many are you 
willing to pay so as to receive it immediately?” When one 
evaluates this question, it makes sense to assume that it is 
certain that the 100 M&M’s exist after 15 minutes (because 
it has not been left out in the hallway). Hence, in speeding 
up its receipt, one only needs to pay for the pure temporal 
cost (and not the linear risk cost). Of course, further 
experiments will be needed to test this hypothesis. Note 
also that both of the above arguments make it clear that 
delaying a reward in multiple steps by short delays causes 
it to decay faster than delaying it by the total amount all at 
once. This effect has been previously observed and labeled 
as “subadditivity” (Read, 2001). 

In sum, most human discounting tasks differ from 
animal tasks in a crucial aspect: humans do not have to 
wait the corresponding delays. Consequently, the 
opportunity cost term in TIMERR should not directly 
apply to these tasks. However, assuming that humans 
employ a simple model of risk (constant decay) in such 
decisions — similar to an assumption made previously in 
a successful descriptive model (Killeen, 2009) — preserves 
all of the mathematical qualities of the subjective value of 
a delayed reward as derived by TIMERR. Evidence 
collected across numerous experiments (see Kalenscher & 
Pennartz, 2008; Loewenstein & Prelec, 1992; Madden & 
Bickel, 2010 for reviews) support these predictions. 
Recently, there have been attempts to test humans on 
discounting tasks similar to animal tasks, requiring them 
to wait out the delays for real rewards (e.g., Reynolds & 
Schiffbauer, 2004). More work is needed to know whether 
behavior in this task will reproduce the above results (see 
Jimura et al., 2009; Krishnan-Sarin et al., 2007; Melanko et 
al., 2009; Reynolds, 2006; Reynolds et al., 2008; Shiels et al., 
2009; Smits et al., 2013). 

3 Connection Between 
Theories of Intertemporal 
Decision-Making and Time 
Perception 
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As mentioned early in the Introduction, it is only natural 
that time perception and intertemporal decision-making 
go hand-in-hand since the latter requires the former. It is 
also then intuitive to assert that the former is more 
fundamental than the latter. In this view, mechanisms of 
time perception evolved under their own evolutionary 
pressures, whereas intertemporal decision-making was 
only as good as animals’ ability to perceive the delays to 
reward. Hence, all prior attempts to connect intertemporal 
decision-making and time perception have assumed time 
perception to be the more fundamental of the two 
processes (e.g., Bateson, 2003; Cui, 2011; Gibbon et al., 1988; 
Kacelnik & Bateson, 1996; Kim & Zauberman, 2009; Lapied 
& Renault, 2012a; Meck, 2003; Ray & Bossaerts, 2011; 
Takahashi, 2005, 2006; Takahashi et al., 2008; Zauberman 
et al., 2009).  

The sine-qua-non of theories of time perception is their 
treatment of Weber’s law (see Allman et al., 2014; Bateson, 
2003; Gibbon, 1977; Gibbon et al., 1997; Killeen & 
Fetterman, 1988; Matthews & Meck, 2014; Matell & Meck, 
2000). Weber’s law is easily understood by considering an 
example. Imagine that one is tasked with finding the 
longer rod among two iron rods placed in parallel from 
just a glance; no measurements or realignments are 
allowed. If one of them were a meter and the other two, 
the difference should be as clear as night and day. 
However, if they are a hundred meters and a hundred and 
one meters long, this will be considerably more difficult, 
even though the difference is still one meter. Essentially, 
Weber’s law states that the difference between two 
quantities is judged relative to the quantities themselves. 
Weber’s law also appears in timing: it is easier to 
discriminate one second from two seconds than to 
discriminate one hundred seconds from one hundred and 
one seconds. A mathematical statement of Weber’s law for 
timing goes even further. It states that the precision of 
perceiving an interval decreases in direct proportion to the 
interval; in other words, the error in perception of an 
interval grows linearly in proportion to the interval. This 
relationship is more commonly known as scalar timing, 
and has been observed repeatedly in experiments for 
humans and non-human animals (e.g., Allan & Gibbon, 
1991; Cheng & Meck, 2007; Church & Gibbon, 1982; 
Gibbon, 1977, 1992; Gibbon et al., 1984, 1997; Gibbon & 
Church, 1981; Lejeune & Wearden, 2006; Matthews & 
Meck, 2014; Meck & Church, 1987; van Rijn et al., 2014; 
Wearden & Lejeune, 2008).  

Before we consider the different theories of time 
perception and how they explain scalar timing, we would 
like to explain how scalar timing can explain non-
stationary time preferences. Recall that the most well-

established result on intertemporal decision-making is 
that time preferences are non-stationary. Let us reconsider 
the two example questions we provided earlier to 
illustrate this point: “which would you prefer: $100 now or 
$105 in a month?” and “which would you prefer: $100 in a 
year or $105 in a year and one month?” Considering the 
above questions from the perspective of scalar timing, it 
must be immediately clear that the month of difference in 
the first question is “subjectively longer” than the month 
in the second question (of course, when the numbers are 
specified, they should be treated as mathematically 
equivalent, but animals must estimate such durations 
from experience). So essentially, even though the interval 
between both rewards is constant, the further away the 
rewards are from the decision, the harder it is to 
discriminate between the two delays. Hence, as the delays 
are perceived to be more and more similar, the tendency 
to pick the larger reward should increase. Thus, scalar 
timing can lead to non-stationary time preferences. 

The above argument is the essence of numerous prior 
attempts to connect theories of time perception to 
theories of intertemporal decision-making (Bateson, 2003; 
Cui, 2011; Gibbon et al., 1988; Kacelnik & Bateson, 1996; 
Stephens, 2002; Zauberman et al., 2009). In fact, it has also 
been shown that if the perception of time were 
logarithmic, which is consistent with scalar timing, an 
exponential discounting in subjective time is 
mathematically equivalent to a hyperbolic discounting in 
real time (Takahashi, 2005; Zauberman et al., 2009). 
Similar explanations also exist using other non-linear 
representations of subjective time (Ray & Bossaerts, 2011). 
Thus, it has been argued that the reason for non-stationary 
intertemporal preferences is because of imperfections in 
time perception (Bateson, 2003; Cui, 2011; Gibbon et al., 
1988; Kacelnik & Bateson, 1996; Kim & Zauberman, 2009; 
Lapied & Renault, 2012a; Ray & Bossaerts, 2011; Takahashi 
et al., 2008; Takahashi, 2005, 2006; Zauberman et al., 
2009). For other possible connections between time 
perception and intertemporal decision-making see Balci et 
al. (2009, 2011) and Heilbronner and Meck (2014). 

Now, let us consider the different theories of time 
perception. All the theories considered here pertain to 
interval timing, i.e. timing in the range of seconds to 
minutes. Further, we will only consider two of the most 
popular theories of timing, as our major goal here is in 
studying the relationship between intertemporal decision-
making and time perception. For a more thorough review 
of the models of timing, see the many reviews and primary 
articles that have been written on this topic (e.g., Ahrens & 
Sahani, 2011; Allman & Meck, 2012; Allman et al., 2014; 
Almeida & Ledberg, 2010; Buhusi & Meck, 2005; 
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Buonomano & Karmarkar, 2002; Buonomano, 2007; 
Gallistel & Gibbon, 2000; Gavornik et al., 2009; Gibbon et 
al., 1997; Grossberg & Schmajuk, 1989; Hass et al., 2008; 
Hass & Herrmann, 2012; Ludvig et al., 2008; Luzardo et al., 
2013; Machado, 1997; Matell & Meck, 2000, 2004; Mauk & 
Buonomano, 2004; Meck, 1996; Meck & Benson, 2002; 
Merchant et al., 2013; Miall, 1989; Shankar & Howard, 2012; 
Simen et al., 2011, 2013; Teki et al., 2011; Treisman, 1963; 
Wackermann & Ehm, 2006). 
The most popular theory of timing is the Scalar 
Expectancy Theory (SET) – also known as scalar timing 
theory (Church, 2003; Gibbon et al., 1984; Gibbon, 1977; 
Matell & Meck, 2000). This theory proposes that there are 
three different modules working together to time an 
interval. The first stage is a pacemaker that produces a 
continuous pulse train that is gated on to a second, 
accumulator, stage upon receipt of a signal to time. The 
accumulator counts the number of pulses until the end of 
the interval being timed. The total number of accumulated 
pulses is then compared against a representation of that 
interval stored in a reference memory stage. Crucially, the 
comparison is based on a ratio-rule so as to achieve scalar 
timing. Such ratio comparisons are commonly observed in 
many timing tasks (Gibbon & Fairhurst, 1994; Gibbon et 
al., 1997; Gibbon, 1992). The most important source of 
variability in timing (among variability in clock speed, 
clock reliability, accumulation, comparator and memory) 
according to SET is the variability introduced when a 
current duration in working memory is compared to a 
remembered duration (Gibbon et al., 1984). 

A major competitor to SET is the Behavioral Theory of 
Timing (BeT) (Killeen & Fetterman, 1988). BeT, too, 
effectively uses a similar pacemaker-accumulator system. 
BeT states that signals that instruct timing onset result in a 
series of “adjunctive behavioral states”—a stereotyped 
sequence of psychological states—that indicate the 
passage of time. According to BeT, animals tell time by 
knowing the position of their current adjunctive state in 
relation to the sequence. In the simplest approximation, 
the transition time between states was assumed to be 
exponentially distributed as resulting from a Poisson 
clock, thereby making the arrival time of a given state, 
gamma distributed. The core assumption of BeT is that the 
rate of the Poisson accumulation is proportional to the 
reinforcement rate. As most timing tasks confound 
reinforcement rate with the target duration (since in many 
tasks, rewards are received only at the end of the intervals 
to be timed) (e.g., Killeen, 1975; Killeen & Fetterman, 1988), 
the above assumption means that the standard deviation 
of the distribution of a given adjunctive state is 
proportional to the period of food delivery, thus resulting 

in scalar timing (Bizo et al., 1997; Killeen & Fetterman, 
1988). 

We are not going to review the merits and demerits of 
the above theories or any of the alternate theories of 
timing here (e.g., Ahrens & Sahani, 2011; Almeida & 
Ledberg, 2010; Creelman, 1962; Gallistel & Gibbon, 2000; 
Gavornik et al., 2009; Grossberg & Schmajuk, 1989; Hass et 
al., 2008; Karmarkar & Buonomano, 2007; Ludvig et al., 
2008; Luzardo et al., 2013; Machado, 1997; Matell & Meck, 
2000, 2004; Meck, 1996; Miall, 1989; Shankar & Howard, 
2012; Simen et al., 2011; Teki et al., 2011; Treisman, 1963; 
Wackermann & Ehm, 2006). These can be found inBuhusi 
and Meck (2005), Gibbon et al. (1997), Matell and Meck 
(2000, 2004), Merchant et al. (2013), and Simen et al. 
(2013). However, a central consideration missing in the 
above is that none of these models really attempts to 
answer the question of why Weber’s law is (or should be) 
true; they only address how Weber’s law is generated. 
Clearly, an ideal timing system, free of any noise, should 
be able to precisely time any duration. A first-order 
deviation from this ideal system would have a constant 
error in timing at any duration — not an error that 
increases in proportion to the duration. So what could be 
the reason behind a scalar increase in noise? 

One possible solution is to postulate that animals’ 
timing can only be as good as the neurons that help them 
to time. Since we know that neurons are inherently noisy 
information processors, timing behaviors will reflect the 
noise-duration relationship that neurons produce (see 
Oprisan & Buhusi, 2014). Let us now consider the simplest 
assumption of noisiness in neuronal firing, i.e. that they 
fire according to a Poisson process of rate λ. Assume that 
timing of an interval is done by counting the number of 
spikes: the moment the target number of spikes (say n) has 
been emitted, the interval is deemed to have expired. 
Hence, the expiration of an interval is treated as the arrival 
time of the nth spike. For a Poisson distribution, the arrival 
time of the nth spike has an Erlang distribution (special 
case of a gamma distribution) with a mean and standard 
deviation expressed as: 

 
(12) 

The corresponding Cv (coefficient of variation = standard 
deviation/mean) is given by 

 
(13) 

If the firing rate of the Poisson process is represented as λ, 
the number of spikes required to time a target interval of t 

;  =n n
µ σ

λ λ
=

1
vC n
=



28  •  TTPR 2014, Vol. 1, Art. 4 Namboodiri et al.  •  Rationalizing Decision-Making 

 

is simply n = tλ. Thus, the Cv can be re-written as . 
Therefore, it is clear that for a Poisson process to produce 
scalar timing (constant Cv), its rate has to be inversely 
proportional to the interval being timed (i.e. tλ = constant). 
To be sure, the above treatment is the exact mathematical 
equivalent of BeT. However, the difference is in the 
meaning of the variables. While BeT’s Poisson process is 
an abstract sequence of behavioral states, the above 
Poisson process is a spike train of a neuron. Owing to this 
critical difference, BeT had to assume that the rate of the 
Poisson process is inversely proportional to the 
reinforcement density (which is in turn inversely 
proportional to the target time, in typical tasks) so as to 
obtain a constant tλ. This assumption was not borne out 
empirically (Bizo et al., 1997). But the mathematical 
elegance of BeT is captured by the above treatment of a 
Poisson neural spike train. 

To summarize, here is a simple neural model for timing 
that produces scalar timing: a Poisson spike train is 
initiated with a rate inversely proportional to the time 
interval to be timed. The interval is read out as the time to 
fire a constant threshold of spikes. Let us now actually 
calculate some numbers to see if this model is neurally 
plausible. Typical Cv values are around 0.1-0.5 in animals 
(e.g., Matell et al., 2003, 2004, 2006). From Equation (13), 

the number of spikes for the threshold, n, is approximately 
11 (considering a Cv of 0.3). Since n = tλ, this means that in 
order to time an interval of 11s, this neuron has to spike at 
1Hz, and at 0.1Hz for an interval of 110s. This firing rate is 
prohibitively low to be neurally plausible. Hence, the 
above simple neural model which is mathematically 
equivalent to BeT cannot be implemented by single 
neurons. 

However, one could imagine the above model to be 
implemented by a network of excitatory and inhibitory 
neurons working so as to produce a balanced integration 
of Poisson-like spikes. This is exactly what was done in 
2011 by Simen et al. (Simen et al., 2011). They showed that 
under some simple assumptions, a drift-diffusion 
accumulator model of timing comprising Poisson neurons 
connected into balanced excitatory and inhibitory 
networks can work similarly to the mathematical model 
presented above. This is shown in Figure 12. In this 
conception, the mathematics of BeT is a special case when 
there is no inhibitory input. We will not go into a more 
detailed review of this model, other than to point out that 
while it retains most of the mathematical elegance of BeT 
(and the treatment above), it differs in some quantitative 
details; the distribution of the timed interval is inverse-
Gaussian and not a gamma distribution (Simen et al., 
2011).  

 
Figure 12. A neural accumulator circuit that implements the simple mathematical argument (similar to BeT) presented in Section 3, modified from Figure 
1 in Simen et al. (2011). There are four different modules in the model. Bistable switches turn on upon timing onset (“start”) to produce clock speeds 
adjusted to the target interval (“clock pulse generator”). An “integrator” produces a linearly rising ramp with the passage of time. The moment the ramp 
hits a threshold, a “trigger” turns on indicating the lapse of the target interval so as to produce the corresponding behavior. Simulations of the model are 
shown below to show the different clock speeds producing an inverse-Gaussian distribution of timed intervals (Simen et al., 2011). 
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Hence, according to the view of the above theories, scalar 
timing is a consequence of noisy information processing 
by neurons. It must be emphasized that the above models 
and theories of timing do not postulate any direct 
correlations between time perception and intertemporal 
decision-making. Recent experimental evidence, however, 
suggests otherwise (Baumann & Odum, 2012; Wittmann et 
al., 2007; Wittmann & Paulus, 2008). In fact it was found 
that in general, individuals with better perception of time 
were more tolerant to delay (e.g., Baumann & Odum, 2012; 
Wittmann & Paulus, 2008) (for a more detailed discussion 
of these results, see Section 4). This result is not consistent 
with the proposition earlier in this section that Weber’s 
law underlies non-stationary time preferences. This is 
because as the perception of time becomes better and the 
delays between two options become better discriminated, 
the tendency to pick the smaller reward should increase 
(compared to when the delays are judged to be similar). 
The above argument clearly predicts a reduced tolerance 
to delay with better perception of time, in contrast to 
experimental data. 

In our theory, we approached the problem of time 
perception entirely differently. In fact, we argued that 
intertemporal decision-making is the more fundamental 
of the two, completely opposite to all the prior attempts to 
connect intertemporal decision-making and time 
perception (e.g., Bateson, 2003; Cui, 2011; Gibbon et al., 
1988; Kacelnik & Bateson, 1996; Kim & Zauberman, 2009; 
Lapied & Renault, 2012a; Ray & Bossaerts, 2011; Takahashi 
et al., 2008; Takahashi, 2005, 2006; Zauberman et al., 
2009). We postulated that time is subjectively represented 
in such a way that the subjective representation of reward 
rate (subjective value per unit subjective time) is an 
accurate reflection of the true change in expected reward 
rate and/or reward value (cf., Lake & Meck, 2013; 
MacDonald et al., 2012; Meck, 1988, 2006; Meck et al., 2012; 
Yin & Meck, 2014). 

Using the same symbols as in Section 2.2, this postulate 
can be expressed as 

 
(14) 

Here, ST(t) is the subjective representation of the true 
delay to reward t. Solving for the subjective time, we get 
the following simple expression 

 

(15) 

where Time is the past integration interval, as mentioned in 
Section 2.2. It must be emphasized that the subjective 
representation of the delay is not the subjective report of 
the delay; it is how the interval is represented on a 
subjective neural scale. Figure 13 shows a plot of ST(t) with 
respect to the actual delay, t. From the plot, it is clear that 
the ability to discriminate between intervals decreases as 
they increase. Further, low values of Time lead to 
underproduction of time intervals in a simulated time 
reproduction task (Figure 13C,D), appearing as if an 
internal “clock” is running faster. To see the details of how 
this accumulator model works, see Namboodiri et al. 
(2014), but an intuitive explanation for why there is an 
underproduction of intervals for low Time is as follows: 
during the production phase of the reproduction task, the 
time is judged to have elapsed when the accumulator hits 
for the first time the remembered threshold (from the 
estimation phase). Since the more non-linear the 
dependence of ST(t) on t (i.e. the lower the value of Time), 
the more the chance that the accumulation will hit the 
threshold earlier (due to the noise in accumulation), and 
hence, the higher the bias towards an earlier time. 

 

 
Figure 13. Reprinted from Namboodiri et al. (2014). A. Two illustrative 
animals with different values of the past integration interval (Time) are 
shown, along with their respective subjective representations of the 
rewards. B. The subjective representation of time function as expressed 
in Equation (15) is plotted for both cases, indicating that the ability to 
discriminate between the subjective representations of 40 and 50 
seconds is higher for the monkey with Time = 300s. C. Results from a 
simulated time reproduction task are shown using an accumulator model 
as described in Namboodiri et al. (2014), demonstrating the 
underproduction of long intervals. D. The underproduction of intervals, 
interpreted commonly to result from a faster “clock”, is more pronounced 
when Time is low. Hence, individuals with low values of Time will appear as 
if their internal “clocks” are faster. 

( , )
( ) est

SV r t r a
ST t t

= −

( )
1

ime

tST t t
T

=
+



30  •  TTPR 2014, Vol. 1, Art. 4 Namboodiri et al.  •  Rationalizing Decision-Making 

 

We showed previously (Namboodiri et al., 2014) that a 
noisy accumulator model implementing the above 
equation leads to the following expression of Cv 

 

(16) 

where c is a constant additive noise in a memory process 
and k represents the accumulation noise. If c = 0, the above 
equation implies a constant Cv plus a deviation that 
decreases with the past integration interval. As the past 
integration interval becomes larger and larger, the 
coefficient of variation is closer and closer to a constant. In 
other words, timing becomes more and more scalar the 
larger the value of the past integration interval (and larger 
the tolerance to delay in intertemporal decisions). 
Crucially, Equation (16) predicts quantitative deviations 

from scalar timing, depending on the interval being timed 
and the past integration interval. In fact, a review of thirty 
four studies in 1997 by the creator and proponents of 
scalar timing (Gibbon et al., 1997) observed a Cv that 
increased with the duration being timed (see Figure 14), as 
predicted by Equation (16) (assuming constant Time across 
these experiments). For other studies showing an increase 
in Cv at long durations, consistent with Equation (16), see 
Bizo et al. (2006), Lejeune and Wearden (1991), Zeiler 
(1991), Zeiler and Hoyert (1989), and Zeiler and Powell 
(1994), but also see Lewis and Miall (2009) for the opposite 
pattern. Nevertheless, it must be pointed out that 
Equation (16) results from specific assumptions (e.g., 
Poisson-like noise in accumulation) about the neural 
implementation of Equation (15). It is possible that more 
detailed and realistic neural implementations might differ 
from the approximation expressed in Equation (16). 

 

 
Figure 14. Coefficient of variation across different timing tasks is plotted as a function of the interval being timed. Adapted from Figure 3 in Gibbon et al. 
(1997). 

 
Another key feature of temporal discrimination tasks is 
the point of subjective equality (PSE)—the duration 
which is judged to be equidistant between two intervals to 
be discriminated. SET predicts PSE to be at the geometric 
mean of the two intervals (Allan & Gibbon, 1991; Gibbon, 
1977; Gibbon et al., 1984). This prediction received 
considerable experimental support (e.g., Allan & Gibbon, 

1991; Church & Deluty, 1977; Gibbon, 1986; Melgire et al., 
2005; Penney et al., 2000; 2008; Platt & Davis, 1983) and 
has been proposed to either result from ratio comparisons 
using linear subjective time or from logarithmic subjective 
time (Gibbon & Church, 1981). However, some 
experiments have shown deviations from the geometric 
mean (e.g., Kopec & Brody, 2010; Wearden, 1991). In fact, in 
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a re-analysis of some earlier data (claiming PSE at 
geometric mean) using a more precise model, (Killeen et 
al., 1997) found that the PSE was found to vary between 
the harmonic mean and the arithmetic mean. Our theory 
also predicts that the PSE will be between the harmonic 
and arithmetic mean depending on the past integration 
interval. The lower the past integration interval, the more 
non-linear the representation of time becomes and the 
closer the PSE gets to the harmonic mean. When the past 
integration interval is very large, the PSE instead 
approaches the arithmetic mean. It must be pointed out 
that we have not attempted to quantitatively fit the PSE 
observed in previous studies because of the difficulty in 
knowing the value of Time across these studies. However, 
for a different model that attempts to systematically 
explain variance in the PSE, see Kopec and Brody (2010). 
See also Balci et al. (2011) for an interesting perspective on 
how differing abilities to time would dictate different 
optimal PSE values. 

In sum, prior theories of time perception treat time 
perception as independent of intertemporal decision-
making. Attempts to connect both have always treated 
time perception as more fundamental, implicitly assuming 
that mechanisms of time perception evolved under their 
own selective pressures. The most popular of these models 
are accumulator models, in which scalar timing is 
assumed to result from different sources of neural 
variability connected to the accumulation process (e.g., 
accumulation variability, pacemaker variability, memory 
variability etc.). However, in TIMERR theory, we postulate 
that intertemporal decision-making is more fundamental, 
i.e. that animals evolved to maximize reward rates and 
that scalar timing is a result of representing time 
subjectively so that the subjective reward rate accurately 
represents the change in expected reward rate (Equation 
(14)). This model is able to explain some experimentally-
observed deviations from Weber’s law (but fails to explain 
some others) as well as individual variability in points of 
subjective equality in temporal discrimination 
experiments. More crucially, however, according to our 
theory, time perception is fundamentally linked to 
intertemporal decision-making: the higher the tolerance 
to delays, the better the perception of time. Ours is the 
only current mathematical theory that can explain such 
experimentally observed correlations systematically 
(Barkley et al., 2001; Barratt, 1983; Bauer, 2001; Baumann & 
Odum, 2012; Berlin et al., 2004; Berlin & Rolls, 2004; Bickel 
& Marsch, 2001; Dougherty et al., 2003; Heilbronner & 
Meck, 2014; Levin et al., 1996; Pine et al., 2010; Reynolds & 
Schiffbauer, 2004; van den Broek et al., 1992; Wittmann et 
al., 2007; Wittmann & Paulus, 2008).  

To revisit, the reason why we treated decision-making 
as fundamental is that while decision-making can be 
clearly treated within the optimization problem of 
maximizing reward rates, there is no such well-defined 
optimization problem for time perception (in fact, the 
most optimal model would have a constant precision, 
independent of the duration represented). Interestingly, 
while previous models that connect intertemporal 
decision-making and time perception treat the 
psychophysical observations of time perception (scalar 
timing) as a fundamental postulate, we are able to derive 
approximate scalar timing from reward rate maximization. 
We would like to point out that the fact that such a 
connection can be made does not prove that time 
perception indeed evolutionarily followed the need to 
maximize reward rates, nor does it mean that every 
instance of time perception requires decision-making 
(making intertemporal decisions, of course, necessitates 
the measurement of time). It only suggests that 
maximizing reward rates might underlie the evolutionary 
origin of the psychophysics of time perception. 

In the next section, we focus on how variability in the 
past integration interval leads to corresponding variability 
in intertemporal decision-making and time perception. 

4 Impulsivity in the Domain of 
Time 

As discussed in Section 2.2 and Section 3, our theory 
postulates that the duration over which the past reward 
rate is estimated (Time) directly determines the tolerance to 
delays in intertemporal decision-making (i.e. the steepness 
of temporal discounting) and the non-linearity of time 
perception. Hence, a fundamental question is how the 
past integration interval is determined. We have 
previously listed a set of qualitative arguments on this 
issue (see "Effects of Plasticity in the Past Integration 
Interval" in Appendix of Namboodiri et al., 2014) and here, 
we will present a brief summary of those arguments. 

An optimal value of Time will have to satisfy four criteria: 
(1) it should maximize the metabolic fitness of the animal, 
through (2) reliable estimation of the past reward rate and 
temporal delays in the environment (larger the value of 
Time, better the accuracy in time perception) so as to (3) 
appropriately estimate the opportunity cost involved in 
decisions, while (4) minimizing computational/memory 
costs. The essence of this optimization is the trade-off 
between maximizing reward rates and minimizing 
metabolic costs: integrating over long intervals in 
stationary environments would lead to better estimates of 
opportunity costs, but lead to increased metabolic costs 
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associated with the energy spent by the brain in its 
execution. Further, when environments are non-
stationary, the problem becomes even more complicated 
as one will have to find the duration of history that 
appropriately represents the current decisions. We will not 
attempt a quantitative treatment of this problem here. 
Similar, but less general, optimization problems have been 
investigated elsewhere (e.g., Behrens et al., 2007; Bialek, 
2005; Courville et al., 2006; Nassar et al., 2010; Pearson et 
al., 2011; Wilson et al., 2013).  

We are especially interested in environments that result 
in low values of the past integration interval, and 
consequently steep temporal discounting. This is because 
steep temporal discounting has been associated with a set 
of behavioral disorders under the umbrella of “impulsivity” 
(e.g., Evenden, 1999; Madden & Bickel, 2010). Below, we 
will only focus on the aspects of impulsivity that relate to 
decisions in the dimension of time.  

In a non-stationary environment with a high temporal 
frequency of instability, the optimal Time will have to be 
correspondingly low so as to provide an appropriate 
opportunity cost estimate for current decisions. At the 
other extreme, in a stationary (stationary refers to time-
independent statistics and not low variability in the 
reward statistics) environment in which the variability in 
reward rate is very low, a low Time is sufficient to 
appropriately estimate the long-term statistics. Hence, 
here too, since there is diminishing benefits in integrating 
over longer and longer durations, the metabolic costs will 
drive down Time. Another instance where Time would be low 
is when the reward rates are very high. In a highly 
rewarding environment, any additional benefit in 
integrating over long intervals would be offset by the 
increase in metabolic costs. Hence, we predict that 
individuals living in the above reward environments will 
discount rewards steeply, because steep discounting is 
optimal in these environments. In this conception, 
abnormally-steep discounting observed in experiments is 
not necessarily a sign of a behavioral disorder (viz. 
impulsivity), but could represent optimality in an 
individual’s perceived reward environment. Of course, this 
does not mean that every instance of abnormally-steep 
discounting is optimal; it could also result from 
aberrations in the brain mechanisms underlying 
appropriate setting of Time. Such aberrations might be 
present in neurobiological disorders leading to impulsive 
decision-making as seen, for instance, in Parkinson’s 
disease (Housden et al., 2010; Voon & Dalley, 2011; Voon et 
al., 2010) and schizophrenia (Avsar et al., 2013; Heerey et 
al., 2007; Strauss et al., 2014). Interestingly, these disorders 
are also accompanied with distortions in timing and time 

perception (e.g., Allman & Meck, 2012; Malapani et al., 
1998; Penney et al., 2005). 

Since our theory also predicts that abnormally-steep 
temporal discounting will be correlated with highly non-
linear time perception, we would predict, for instance, 
that in a highly rewarding environment in which Time is 
low, temporal perception would appear sped up. This 
prediction may underlie anecdotal observations that “time 
flies when you’re having fun”. Our account would also 
predict that a decrease in reward rate might lead to 
temporal perception appearing slowed down. This might 
explain some recent observations (Galtress & Kirkpatrick, 
2009; Galtress et al., 2012; Kirkpatrick, 2014) that cannot be 
easily explained by current timing theories (see Galtress et 
al., 2012 for a discussion). We would like to point out at 
this stage that there are other models that also predict a 
dependence of time perception on the recent history, 
arguing that recently experienced temporal intervals act as 
a prior for Bayesian optimization of time perception (e.g., 
Cicchini et al., 2012; Gu & Meck, 2011; Jazayeri & Shadlen, 
2010; Shi et al., 2013) 

As mentioned in Section 3, variability in Time is also 
expected to underlie 1) deviations from Weber’s law at 
long durations, and, 2) variations in the point of subjective 
equality in temporal discrimination tasks. While other 
models ascribe such observed variability to variability in 
properties of the accumulator or other neural variables 
(e.g., Bizo et al., 2006; Killeen et al., 1997), we predict that 
variability within subjects can arise from a drive to 
maximize reward rates in varied experimental settings. A 
strong and unique prediction of this account is that 
temporal perception is correlated with intertemporal 
decision-making. Experimental observations have 
supported this prediction (e.g., Barkley et al., 2001; Barratt, 
1983; Bauer, 2001; Baumann & Odum, 2012; Berlin et al., 
2004; Berlin & Rolls, 2004; Bickel & Marsch, 2001; 
Dougherty et al., 2003; Heilbronner & Meck, 2014; Levin et 
al., 1996; Pine et al., 2010; Reynolds & Schiffbauer, 2004; 
van den Broek et al., 1992; Wittmann et al., 2007; 
Wittmann & Paulus, 2008). A stronger, yet untested, 
falsifiable prediction is that causing changes in the 
duration over which past reward rate is estimated leads to 
corresponding changes in discounting steepness and time 
perception. This is the essence of our theory.  

5 Conclusion  
A rationalization of decision-making in the temporal 
domain has long been sought, yet an understanding of this 
problem remains unfulfilled. We have identified three 
general reasons why there has not yet been significant 
agreement between theories and experimental 
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observation. The first is that, ever since the first formal 
attempts to make a reckoning of how humans and animals 
regard the cost of time, the notion of a discounting 
function has pervaded, having been ingrained and reified 
not as a description of observed behavior but rather as a 
thing with agency applied by the agent to determine an 
outcome’s subjective value. The second is that 
intertemporal decision-making has not been framed as 
reward rate maximization under the constraint of what is 
feasibly achievable by an agent given the unknowable 
future. The third is that temporal discounting and time 
perception have largely been treated as separate problems; 
when not so, intertemporal decision-making has been 
regarded as subordinate to time perception rather than 
being fundamental. These historical biases have combined 
so that the search for the perfect discounting function, 
that makes a principled, concise, and full accounting of 
decision-making in the time domain, has remained an 
elusive one.  

While we posit that, for these reasons, an unresolved 
tension between theory and observation exists, theories of 
intertemporal decision-making over nearly two centuries 
have lead to a sophisticated and rich understanding of this 
issue, from the recognition of an interplay between the 
magnitude of an outcome and its cost in time, to its 
formalization as a psychological conflict, and subsequently 
to its reframing as a maximization to increase fitness. 
Nonetheless, theories from economics and behavioral 
ecology, whether attempting to rationalize intertemporal 
decision-making within the framework of discounted 
utility or of reward-rate maximization, fail to provide 
satisfactory explanations for empirical data, or, in the case 
of descriptive modeling that provides good fit to 
observation, fail to provide any normative understanding 
of why discounting functions take on their apparent form. 
Recent experiments (e.g., Blanchard et al., 2013; Pearson et 
al., 2010), however, have shown that what has been 
previously regarded as clear evidence that animals do not 
maximize reward rate results from limits in their 
associative learning.  

Recognizing that reward rate maximization could then 
yet be the fundamental principle behind intertemporal 
decision-making, we have derived from first principles a 
decision-making algorithm that would lead to reward-rate 
maximization under experiential constraints (Namboodiri 
et al., 2014). In this theory we find that the duration over 
which the past reward rate is integrated directly 
determines the tolerance to delays in intertemporal 
decision-making (i.e. the steepness of temporal 
discounting) and the non-linearity of time perception. 
Thereby, we also provide a novel theory of time perception 

which can explain hallmark behavioral observations (e.g., 
Weber’s law, point of subjective equality). Unique to our 
theory, we predict that the ability of individuals to 
perceive time is correlated with their tolerance to delay in 
intertemporal decision-making. Therefore, our theory 
suggests that aberrant timing behavior seen in a range of 
cognitive/behavioral disorders can be rationalized as a 
consequence of aberrant integration over experienced 
reward history. A fundamental test of TIMERR, then, is 
assessing whether, as the duration over which past reward 
rates are estimated increases (or decreases), the steepness 
of temporal discounting decreases (or increases). This is 
the direct falsifiable test of our theory. 
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